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Motivation

Due to the difficulty on solving exact N-S equations, numerical
schemes have been adopted to solve complex fluid flows patterns.
The most popular being F*M (for FDM, FVM or FEM).
In particular, FDM/FVM method on structured grids are very
suitable to solve on GPGPU's due to the local requirement of data
to solve the fields (Cellular automata?).
Our concern is

® a quick method in order to make real time computation, and

also

m having enough precision to solve engineering problems.

LCA wiki.


http://en.wikipedia.org/wiki/Cellular_automaton

The Continuum Model

The equations governing incompressible Newtonian fluid flows are

0 1
—u+u-Vu:—;Vp+uAu~|—pfe

ot (1)

V.-u=0
being
m u: velocity,
m p: density,
m p: pressure,
m v: kinematic viscosity,

m fo: body forces per volume unit.



Fractional-Step Method

In order to solve the momentum equations in (1)
m Artificial compressibility,
m Fractional steps (— FFT).

So the process is basically a splitting, considering Forward Euler
time integration the two equations are

u* —u” n n
At =-V: - (u®u)"+vAu (2)
u™tt —u* 1
- = _ _*V n+1 3
~ Ve (3)

namely, the former having convective-diffusive terms and the later
the pressure.



Fractional-Step Method

The Fractional-step has three steps
1 solving (2) (predictor step),

2 solving a Poisson equation for pressure
Apttl =L (v .u 4
p At ( u ) Y ( )

3 updating u* (corrector step, equation (3)) and obtaining u"*?.

Using Adams-Bashforth 2t order time integration, the momentum
equations problem is

v = % BRU") - R(u™ )], (5)

where
R(u")=-V:-(u®@u)"+vAu". (6)



Staggered Grids and QUICK stabilization

Using centered schemes for the velocity and pressure in the
velocity correction methods produces

m odd-even nodes decoupling equations on pressure and velocity
and

m spatial decoupling between pressure and velocity.
Solution: — Staggered Grids.

In order to get a stable solution for the convective terms, the
QUICK approach is used. Its advantages includes

m truncation error O(63) on grids with a displacement of g
(where 6 = Ax, Ay, Az, in order to represent the 3 spatial
dimensions),

m mass conservation and other stability characteristics.



Solving the Linear System

We have to solve a linear system Ax = b

m The Discrete Fourier Transform (DFT) is an orthogonal

transformation X = Ox = fft(x).

The inverse transformation O~! = O is the inverse Fourier
Transform x = O "% = ifft(x).

If the operator matrix A is homogeneous (i.e. the stencil is
the same at all grid points) and the b.c.'s are periodic, then it
can be shown that O diagonalizes A, i.e. OAO™! = D.

So in the transformed basis the system of equations is diagonal

OAO 1) (Ox) = (Ob),
(Df(A:B)( ) = (Ob) @)

For N = 2P the Fast Fourier Transform (FFT) is an algorithm
that computes the DFT (and its inverse) in O(N log(N))
operations.



Solving the Linear System

m So the following algorithm computes the solution of the
system in O(N log(N)) ops.
b= fft(b), (transform r.h.s)
m X = D~ 1b, (solve diagonal system O(N))
m x = ifft(X), (anti-transform to get the sol. vector)

m Total cost: 2 FFT's, plus one element-by-element vector
multiply (the reciprocals of the values of the diagonal of D are
precomputed)

m In order to precompute the diagonal values of D,

m We take any vector z and compute y = Az,
m then transform z = fft(z), § = fft(y),

= Dy =/



Solving the Linear System

The system to be solved generally is quite
large.

It can be seen that our domain is compose
on fluid and solids.

The Poisson solver gets a very
approximate solution of the pressure field.

In order to take into account the boundary
condition an iterative method (CG+FFT)
is used.

It can be shown that the condition
number of the preconditioned system
remains constant with refinement.
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LDC Test - Simple Precision

Shear sheet
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Cube Test - Simple Precision
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Sphere Test - Simple Precision
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CPU Results

m i7-382003.60Ghz (Sandy Bridge), 1 core (sequential):
1.7 Mcell /sec

m i7-95003.07 (Nehalem), 1 core (sequential): 1.51 Mcell/sec

m Cellrates with nthreads>1, and W3690©3.47Ghz not available
at this time.

m BUT, we expect at most 7 to 10 Mcell/secs, so there is
speedup factor of 8 to 10, with respect to the GPGPU
(GTX-580, DP).



Results analysis

m For a 128x128x128 mesh (~ 2Mcell), we have a computing
time of 2 Mcell /(140 Mcell/sec) = 0.014 secs/time step.

m That means 70 steps/sec.
m A von Neumann stability analysis shows that the QUICK

stabilization scheme is unconditionally unstable if advanced in
time with Forward Euler.

m With a second order Adams-Bashfort scheme the critical CFL
is ~ 0.588 (pure advection).

m For NS egs. the critical CFL has been found to be somewhat
lower (= 0.5).

mifL=1 u=1 h=1/128, At =0.5h/u = 0.004 [sec], so
that we can compute in 1 sec, 0.28 secs of simulation time.
We say ST/RT=0.28.



computing times
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Considerations

m It can be seen on the previous image that the momentum
equations are being solved in the same amount of time that
the Poisson step.

m Problem: QUICK - Too much shared memory and/or registers
used (other methods are being tested).

m The sphere test show a very rough surface; currently
refinement approaches are being tested but far from be fully
programmed and tested.

m Possible Problem: Poor drag computation?.

m Flow around a cylinder shown good® Strouhal prediction (.259
at Re = 1000), but drag was not actually computed.

2More over, no boundary layer refinement is being done.
3E><p: 0.22, PFEM-2: 0.2475, Mittal= 0.25, OpenFOAM: 0.26.



Considerations

wily)
05 0s

7 Refererce m Preliminary results
umerical 09 .
shows that the flow is
being accelerated, in

/ comparison to the

P reference data (Ghia et
. i al. 1998).
o e m Other stabilization
N schemes are being
: tested.

Size: 2x512x512.



Conclusions

m QUICK method produces
inefficiency due to a highly
spread stencil (Too low
flops/word relationship). Also,
it seems like some artificial
acceleration is being added.

m Staircase bodies reduce
convergence and affect
computation of drag forces.

i-3/2  i-1/2  i+1/2 i+3/2

m The speedup achieved, in
comparison to a CPU, being
10-20x on SP and 7-10 on DP.

tile nodos de QUICK
A u(i+1/2,j,k) # Q-tile

W viij+172,0 77 Q-line (k+-1/2)
® wiijk+-1/2)
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