
SMCV: a Methodology for

Detecting Transient Faults

in Multicore Clusters
Authors: Diego Montezanti, Fernando Emmanuel Frati,

Dolores Rexachs, Emilio Luque, Marcelo Naiouf and
Armando De Giusti

1

24 de Julio de 2012

Projects

�It takes part of the projects accredited
by UNLP within the “Programa de
Incentivos”:
� “Arquitecturas multiprocesador distribuidas.

Modelos, Software de Base y Aplicaciones.”

� “Procesamiento paralelo y distribuido.
Fundamentos y aplicaciones en Sistemas
Inteligentes y Tratamiento de imágenes y video.”

2

Agenda

3

Work context

SMCV: proposed methodology

Background

SMCV description

Experimental validation

Future work

Work Context (I)
Modern Processors:
Challenge Improving computation performance

Multicores – Chip Multiprocessors (CMP’s)

Increasing integration scale - Associated factors:

Increasement of power density

Raise in internal operation temperature

Decrease in supply voltage

Consequences:

Interferences from the environment that affect processors

4

Transient fault vulnerability

Transient Fault:
Affects some hardware component of the system

Physical location: main memory, register file, buses, I/O devices.

Some hardware components are protected (ECC´s, parity)

Critical: processor registers, logics

Short-lived . Do not affect the regular operation of the system

Do not occur exactly the same way never again

Can temporarily invert one or several bits of the affected hardware component
(single or mutiple bit flip).

Application Perspective:
Can alter important information (data, addresses, status information ,operation
codes)

May affect application behavior or results => RELIABILITY

5

Work Context (II)

MTBF (commercial processor): about 2 years

Supercomputers: Frequent reports since 2000

Multicore architectures

Large parallel applications cost of relaunching

Strategies for reliability in HPC (detection first)

6

Transient Faults in HPC systems

Example IBM Power 4
(robust, monocore)
hypothetical supercomputer
MTBF [Mukherjee, S. et al.
(2005)]

Hardware-based
� Physical redundancy

� Most used in critical environments

� Inefficient in general-purpose computers

Software-based
� Low cost (achieved reliability vs involved resources)

� Flexibility, configuration

� Software redundancy

� Basic idea: DMR

� Workload (validation interval)

7

Techniques for Fault- Tolerance

Serial programs

Detection strategy

� Specific for scientific, message passing parallel applications

� Software only

� Leverages intrinsic redundancy in multicore clusters

� Validates contents of messages to be sent

� Low overhead

� Moderate validation interval

� Reduced additional workload

� Fully distributed

� Prevents fault propagation to other application process

8

SMCV: proposed methodology

The application that finishes has correct results

Possible outcomes of a transient fault

9

SER = DUE + SDC + LF SER: Soft Error Rate
DUE: Detected Unrecoverable Error
SDC: Silent Data Corruption
LF: Latent Fault

Transient faults in message-passing

parallel applications

SDC// = TDC + FSC

1. Transmitted Data Corruption

2. Final Status Corruption

� Most SDC are TDC. They have a significant impact on end results

� FSC are similar to serial applications

� SMCV focuses in TDC portion and includes a final comparison

for FSC

10

P 0

P 1

1

2

SMCV_Send()
{

Thread_Synchronization()
Message_Content_Validation()
MPI_Send()

}

Validating Contents of

Messages to be Sent

11

Original Send
Instant

Validation
Interval

Resultant Send
Instant

Copy of Data
to Replica

P0

P1

P0´

P1´

Final Results
Comparison

• All faults that cause TDC are detected
• No fault is propagated to other application process
• Final comparison ensures correct results
• No additional network bandwidth is consumed

SMCV_Recv()
{

MPI_Recv()
Thread_Synchronization()
Copy_Buffer_to_Replica()

}

Leveraging Redundant Hardware

Resources

12

• Each application process is replicated in another core of the same CMP
• Half of the resources are used for redundancy
• The redundant core shares some cache level with the one that runs the application

process
• Most comparisons are resolved at LLC, minimizing main memory access
• Using cores for FT is beneficial for the system

� Decentralized: each process and its replica are locally validated.

� Low overhead in execution time: only one comparison is added
for each byte of each outgoing communication and the end
result.

� Lightweight technique (versus a conservative strategy for
sequential programs, in which each memory write operation is
checked before being written).

� When a fault is detected, the application is safe-stopped,
narrowing error latency (important in scientific applications that
can run for several days).

� Trade-off between detection latency, additional workload and
involved resources.

13

SMCV´s additional features

Versus a conservative every-write validation technique (analyitical
modeling)

� 1

WMV: workload introduced with message validation

WWV: workload introduced with message validation

Csync: cost of synchronization operation

Ccomp: cost of comparison operation

S: store operations (writes), excluding those of messages

M: messages sent by the application

k: average size of a message

14

SMCV´s additional workload

���

���

�
�	. 	���� 	� 	�	. 	�	. 	�����

�	. 	 ����	 �	����� 	� 	�	. 	�	. ���� 	� 	�	. 	�	. 	�����	

Experimental platform:

• Cluster BLADE (LIDI - UNLP)

• 16 servers

• 2 Quad Core Intel Xeon 5405 @ 2.0 GHz, 2 x 6MB cache L2, shared between pairs of cores

• 2 GB RAM each server

• Fedora 12 (64 bits)

• OpenMPI library

15

Experimental environment

Two experiments:
1. Detection efficacy
2. Overhead measurements

Test application:

• Parallel matrix multiplication

• Master/Worker (Master also computes)

• Non-blocking messages

Setup of the environment:

• 4 application processes (Master and 3 Workers)

• Mapping: 4 application processes and 4 thread-based replicas to 8 cores of the blade

Fault Injection Experiments

• Debugging tool

• Breakpoint is inserted (any application process)

• Modification of a variable´s value

• Computation is resumed (simulates a transient fault)

• Both TDC and FSC were injected at certain instants during execution

16

Detection Efficacy

�TDC were detected by message content validation
�FSC were detected by final results comparison

Differences in execution times determined in absence of faults

Setup of the environment:

� Application processes: 2, 4 and 8 (and its replicas)

� Matrix sizes: 512, 1024, 2048, 4096 and 8192

� Mapping that ensures the same conditions of execution with and without SMCV (2
blades for 8 processes)

� With constant processes, it

decreases with problem size.

� With constant size, it increases

with amount of processes (messages).

17

Overhead measurements

Size (N) 2 4 8

512 0,87% 14,24% 55,11%

1024 0,01% 1,63% 21,40%

2048 0,39% 1,61% 10,05%

4096 -0,14% 0,91% 4,74%

8192 0,17% 0,92% 2,45%

Processes

General goal: providing transient fault tolerance for systems formed by
scientific, message-passing parallel applications that are run on multicore
cluster architectures.

Fault Tolerance = Detection + Protection + Recovery

� Integrating transient fault detection methodology to the protection and
recovery strategies available for permanent faults to provide transient fault
tolerance (checkpoint, log, rollback-recovery).

� No need of TMR + voting.

18

Future Work

1. Perfecting detection strategy
• Expanding experimental validation: HPL, NAS
• Integration with fault injection tools
• Achieving transparency for the application (source-code required, thread-based)
• Optimizing the methodology. Configuration of robustness level

2. Providing full tolerance to SDC
• Integration with RADIC

In this way…

Questions?

19

Thank you for your time!

20

