:a Me or
Detecting Transient Faults
in Multicore Clusters

Authors: Diego Montezanti, Fernando Emmanuel Frati,
Dolores Rexachs, Emilio Luque, Marcelo Naiouf and
Armando De Giusti

24 de Julio de 2012

HPC

High-Performance
Co mpurlnq - LATAM

‘UnB 206/ . 1

ttAtb oma
dBarl

e Pro ctts

* [t takes part of the projects accredited
by UNLP within the “Programa de
Incentivos”

e “Arquitecturas multiprocesador distribuidas.
Modelos, Software de Base y Aplicaciones.”

e “Procesamiento paralelo y distribuido.
Fundamentos y aplicaciones en Sistemas
Inteligentes y Tratamiento de imagenes y video.”

une G005,

Universitat Autbnoma
de Barcelona

¢ Work context

¢ SMCV: proposed methodology
¢ Background

¢ SMCV description

¢ Experimental validation

4 Future work

‘UnB c=\o6)

Abm
dBarl

Modern Processors:
Challenge

= |mproving computation performance

-

Multicores — Chip Multiprocessors (CMP’s)

Increasing integration scale - Associated factors:

Increasement of power density

Raise in internal operation temperature

Decrease in supply voltage

Consequences:

Interferences from the environment that affect processors

Transient fault vulnerability

UnB

Universitat Autbnoma
de Barcelona

A0

O

Transient Fault:

4 Affects some hardware component of the system
+ Physical location: main memory, register file, buses, 1/O devices.
¢ Some hardware components are protected (ECC’s, parity)
¢ C(ritical: processor registers, logics
4 Short-lived . Do not affect the regular operation of the system
¢ Do not occur exactly the same way never again

4 (Can temporarily invert one or several bits of the affected hardware component
(single or mutiple bit flip).

Application Perspective:

¢ (Can alter important information (data, addresses, status information ,operation
codes)

4 May affect application behavior or results => RELIABILITY

urB cE08/

: & |
Universitat Autbnoma ‘
de Barcelona

ent Fau

MTBF (commercial processor): about 2 years

Supercomputers: Frequent reports since 2000

10.000.000

1.000.000 -

100.000 -

10.000

Minutes

1.000

100

10

1 4 16 E4 256 1024 4096 16384

Processors

Multicore architectures
Large parallel applications -5 cost of relaunching
Strategies for reliability in HPC (detection first)

UnB

Universitat Autdnoma
de Barcelona

ES5536

262144

Example IBM Power 4
(robust, monocore)
hypothetical supercomputer
MTBF [Mukherijee, S. et al.

(2005)]

_I MTTF in minutes

Hardware-based
> Physical redundancy

» Most used in critical environments

> Inefficient in general-purpose computers

Software-based

» Low cost (achieved reliability vs involved resources)

> Flexibility, configuration
> Software redundancy
> Basicidea: DMR

> Workload (validation interval)

UnB

Universitat Autdnoma
de Barcelona

= Serial programs

Detection strategy

v Specific for scientific, message passing parallel applications
v" Software only
v" Leverages intrinsic redundancy in multicore clusters

v" Validates contents of messages to be sent
v Low overhead
v Moderate validation interval
v Reduced additional workload

v Fully distributed
v" Prevents fault propagation to other application process

The application that finishes has correct results

urB i

Universitat Autdnoma
de Barcelona

SER=DUE +SDC + LF SER: Soft Error Rate

DUE: Detected Unrecoverable Error
SDC: Silent Data Corruption
LF: Latent Fault

Energetic
particle capable
of flipping a bit?

Faulty bit is

read?

Detection &
correction Bit has error
protection?

/ Detection only

Effective error : Affects
corrected; not program
a problem : outcome?

NO

Affects
program
outcome?

Color Classification \
False DUE True DUE
| (Detected (Detected

’ ' Effecti
| T |

3 ! Unrecoverable Unrecoverable
. '- Error) | Error)

SDC
(Silent
Data
Corruption)

Effective error
not noticed;
not a problem

parallel applications

SDC// =TDC + FSC

1. Transmitted Data Corruption

2. Final Status Corruption 2

PO

Pl

e Most SDC are TDC. They have a significant impact on end results
e FSC are similar to serial applications

e SMCYV focuses in TDC portion and includes a final comparison
for FSC

unB 08/ £

[H1-LIDI
Universitat Autbnoma . . 10
de Barcelona

Messages to be Sent

Final Results

’ Comparison
PO SMCV_Recv/() .
{ |

MPI _Recv() ! Copy of Data A

Thr ead_Synchr oni zat i on() I to Replica | e B2
P I Copy_Buffer_to_Replica() i

o }
52 Y
SMCV_Send()

{

Thr ead_Synchroni zati on()

Original Send Resultant Send Message_Cont ent _Val i dati on()
Instant Instant MPI _Send()
\ / }
P1 ,
I Validation !
I Interval |
Pr Lo
\ J
|

All faults that cause TDC are detected

No fault is propagated to other application process

Final comparison ensures correct results 1
No additional network bandwidth is consumed

Resources

CMP CMP
Processor Processor

- 7 < N
Y \ N
/ y A
/ \
y N
7 \
;
%
/ \\
/ .
/ \
.
<
7
’ \\
\
\
\

Core 0 | Core 1 Interconnection network Core 0 | Core 1
L1 L1 L1 L1
Cache | cache Cache | Cache

L2 cache L2 Cache

* Each application process is replicated in another core of the same CMP
« Half of the resources are used for redundancy

¢ The redundant core shares some cache level with the one that runs the application

process
¢ Most comparisons are resolved at LLC, minimizing main memory access
» Using cores for FT is beneficial for the system

UnB

Universitat Autdnoma
de Barcelona

[1-LIDI
Bl =

Universitat Autbnoma
de Barcelona

S addi Ires

Decentralized: each process and its replica are locally validated.

Low overhead in execution time: only one comparison is added
for each byte of each outgoing communication and the end
result.

Lightweight technique (versus a conservative strategy for
sequential programs, in which each memory write operation is
checked before being written).

When a fault is detected, the application is safe-stopped,
narrowing error latency (important in scientific applications that
can run for several days).

Trade-off between detection latency, additional workload and
involved resources.

unB 0S| P2

| DI

Universitat Autdnoma
de Barcelona

S ddaitl d

Versus a conservative every-write validation technique (analyitical
modeling)

Wyv M.Coppe + M. k. Coomp

2 <1
Wwv S. (Coync + Coomp) + M. k.Coyme + M. k. Coomyp

W,v: workload introduced with message validation
Wy,v: workload introduced with message validation
Coync: cost of synchronization operation

Ceomp: COst of comparison operation

S: store operations (writes), excluding those of messages

M: messages sent by the application

k: average size of a message

unB 5 K

o

—

DI
L]

14

Experimental platform:
e Cluster BLADE (LIDI - UNLP)
16 servers

« 2 Quad Core Intel Xeon 5405 @ 2.0 GHz, 2 x 6MB cache L2, shared between pairs of cores
« 2 GB RAM each server
« Fedora 12 (64 bits)

- OpenMPI library

Test application: . = e e

« Parallel matrix multiplication

- Master/Worker (Master also computes)

- Non-blocking messages

Two experiments:
1. Detection efficacy
2. Overhead measurements

urs o8

Universitat Autdnoma
de Barcelona

5

etectio

Setup of the environment:
4 application processes (Master and 3 Workers)
« Mapping: 4 application processes and 4 thread-based replicas to 8 cores of the blade

Fault Injection Experiments

» Debugging tool

 Breakpoint is inserted (any application process)

* Modification of a variable 's value

e Computation is resumed (simulates a transient fault)

* Both TDC and FSC were injected at certain instants during execution

v TDC were detected by message content validation
v FSC were detected by final results comparison

unB 0S| P2

DI
Universitat Autbnoma HE 16
de Barcelona

ernead m

Differences in execution times determined in absence of faults

Setup of the environment:
Application processes: 2, 4 and 8 (and its replicas)

Matrix sizes: 512, 1024, 2048, 4096 and 8192
Mapping that ensures the same conditions of execution with and without SMCV (2

blades for 8 processes) 60%
Processes 50%
Size (N) 2 4 8
512 0,87% 14,24% 55,11% 40% 8
1024 0,01% 1,63% 21,40%
2048 0,39% 161% | 10,05% 30%
4096 -0,14% 0,91% 4,74%
8192 0,17% 0,92% 2,45% 20%

= With constant processes, it .
decreases with problem size. o 12

= With constant size, it increases
with amount of processes (messages).512

UnB

Universitat Autbnoma
de Barcelona

1024 2048 4096 8192

11-LIDI
| Ee

Futur

General goal: providing transient fault tolerance for systems formed by
scientific, message-passing parallel applications that are run on multicore
cluster architectures.

Fault Tolerance = Detection + Protection + Recovery

¢ Integrating transient fault detection methodology to the protection and
recovery strategies available for permanent faults to provide transient fault
tolerance (checkpoint, log, rollback-recovery).

* No need of TMR + voting.
In this way...

1. Perfecting detection strategy
* Expanding experimental validation: HPL, NAS
 Integration with fault injection tools
* Achieving transparency for the application (source-code required, thread-based)
* Optimizing the methodology. Configuration of robustness level

2. Providing full tolerance to SDC
e Integration with RADIC

unB 08/ £

I1-LIDI
Universitat Autbnoma HE 18
de Barcelona

Questions?

Universitat Autdnoma C a @ S
deBarcelona

Thank you for your time!

Universitat Autdnoma C a @ S
deBarcelona

