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Context"

Resource Assesment !
"

•  Estimation !
"Kriging !

"
•  Simulation !

"Turning Bands Method!



Turning Bands Method"

Turning bands simplifies the complexity of the simulation with a dimensional 
reduction, by computing simulated values over lines, that is reducing the 
problem to one-dimensional simulations, and projecting them to the three-
dimensional space, thereby allowing the use of very efficient simulation 
methods to obtain the one-dimensional simulations."

Teoría 

•  Paso de R a R3: 
–  La relación entre C1 y C3 es bastante sencilla: 

  
 
 

•  Paso de R a R2: 
–  La relación entre C1 y C2 es más compleja: 

 Usualmente, se prefiere tomar una sección (2D) de una 
simulación 3D 
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Turning Bands Method"

 The method Proceeds in the following fashion:"
1.  Simulated values       are generated over lines randomly oriented over the unit 

sphere, with covariance function "
2.  For every location on the three dimensional simulated grid, the simulated 

values generated over the line are projected orthogonally into the simulated 
location."

3.  The final simulated value is obtained as the projection of values frommany 
lines:!
!
!
where     are lines randomly distributed over the sphere     ,     is a random value 
with covariance function      and     is the location where we want to simulate."

4.  Conditioning to the actual samples is done as a postprocess through the 
method of kriging residuals. Let                         be a non-conditional simulation. 
The random defined by !
  !
represent the conditional simulation that reproduce the !
distribution of                       conditional to the Y-data."

to a mining case study for the assessment of uncertainty in resources. The
method has been extensively studied, for single variable and multiple variables
( [3], [4],[5], [6], [7]). A detailed description of the algorithm and different imple-
mentation considerations are presented by Emery and Lantujoul [8]. We based
our parallelization on their implementation.

2 Turning Bands Method for Uncertainty
Characterization

Turning bands simplifies the complexity of the simulation with a dimensional
reduction, by computing simulated values over one-dimensional lines and pro-
jecting them to the three-dimensional space, thereby allowing the use of very
efficient simulation methods to obtain the one-dimensional simulations.

The method proceeds in the following fashion:

1. Simulated values Xi are generated over lines randomly oriented over the unit
sphere, with covariance function Cx.

2. For every location on the three dimensional simulated grid, the simulated
values generated over the line are projected orthogonally into the simulated
location.

3. The final simulated value is obtained as the projection of values frommany
lines:

Y (x) =
1√
N

N�

i=1

Xi(< x,Ui >), (1)

where Ui are lines randomly distributed over the sphere S3, Xi is a random
value with covariance function Cx and x is the location where we want to
simulate. In the three-dimensional case, several authors propose that N =
1000 is a number of lines sufficient to match the expected statistic of the
random function [8].

4. Conditioning to the actual samples is done as a postprocess through the
method of kriging residuals. Let {Ys(x), x �R3} be a non-conditional simu-
lation. The random field defined by

∀x �R3, YCS(x) = YS(x) + [Y (x)− YS(x)]
SK (2)

represents the conditional simulation that reproduces the distribution of
{Y (x), x �R3} conditional to the Y-data.

Since we require a three dimensional simulation that reproduces a specific
covariance function Cy, for the method to be implemented, the relationship
between this covariance and the covariance used to simulate the values over the
lines must be determined. For the three dimensional case, this relationship can
be deduced using spherical coordinates:

Cx(r) =
d

dr
[rCy(r)], (3)
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The timeout problem and our proposal"

• The simulation size is too large --> this 
method has a low performance  within CPU"

• Low performance implies very long 
processing times."

• For large resources models, computation 
times may be impractical."

• We use the GPU to parallelize the simulation 
process in the Turning Bands Method and 
thereby reduce the timeout."



Implementation details"

• 90% of  processing time in GPU is devoted to simulation computations and the 
other 10% is related to data transfer between GPU and CPU."

• Processing Power over 400.000 Grid Points per Second"

• Unlimited grid size simulation"

• The parallel algorithm involves over 98% of the !
computational cost involved in the serial implementation."

• There is only two data transfer between CPU and GPU memory."



Performance"

Serial and Parallel execution times are 
measured for runs of the implementations 
under different settings:"

• Varying the simulated grid size from 
1000 to 20 000 000 nodes."

• Running 10 to 100 realizations"

Fig. 1: block diagram of GPU kernel steps

4 Performance

Serial and parallel execution times are measured for runs of the implementations
under different settings:

– Varying the simulated grid size from 1 000 to 20 000 000 nodes.
– Running 10 to 100 realizations.

The hardware features used in the experiments is shown in the table ( 2)

Table 2: Hardware Features

CPU GPU

Model Name Intel Xeon E5405 Tesla C2050

Number of Cores 4 448

Frequency of Cores 2.67GHz 1.15GHz

RAM memory 4GB 3GB

In this section, we present results of the experiments to compare the serial
implementation with the porposed parallel implementation using CUDA.



Performance!
CPU vs Realizations (Serial Implementation)"



Performance!
GPU vs Grid Points (Parallel implementation)"
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GPU vs Realizations (Parallel implementation)"



Summary of Performance"

!
SpeedUp  

vs"

"
Grid Points"

"
Realizations"

"
Average"

"
36,4x"

"
43,2x"

Standard 
Deviation"

"
2,1x"

"
1,3x"

!
Processing!

Power"

"
CPU"

"
GPU"

"
Average"

"
11.560"

"
400.061"

Standard 
Deviation"

"
518"

"
17.171"



Example"

• Three different grid sizes were simulated 
and conditionated with a real data base."

• The data base contains 2375 samples in a 
copper deposit to condition the simulation 
process."

5 Example: Turning Bands Method with Conditioning
Data

In this section, we show an example of the application of the algorithm using
a real dataset from a drillhole campaign of samples in a copper deposit. The
data base contains 2375 samples to condition the simulation process. Three dif-
ferent grid sizes are considered to show the performance of the algorithm, and
in each case 100 realizations are computed. Table 5 shows the speedup for each
experiment. The resulting models are shown in Figures 9.

Table 5: Summary of Example Simulation

CPUTime GPUTime SpeedUp
realizations = 100 [hour] [minute]

N = 1000000 2,5 6,8 21,5x
N = 4000000 9,8 20,8 28,2x
N = 8000000 19,5 34,8 33,6x

Speed ups are significant and indicate that a process that would have taken
nearly a full day of computation, can now be done in about half an hour. Also this
example demonstrates that as the grid size increases, the speed up also increases,
making more convenient its application for very large grids. Conditioning does
not deteriorates the performance of the algorithm.

(a) N=1000000 (b) N=4000000

(c) N=8000000

Fig. 9: Simulated Grids with different size
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• We have shown the application of a parallelized implementation of the turning 
bands simulation method using GPU."

• The optimum speedup is achieved when a large !
number of realizations is required."

•  In a practical application, speedup reached 33x."

• Comparisons were also made against public domain code (sgsim from GSLIB); 
speedup in this case reached 100x (not shown here)."

Conclusions"


