Facial Recognition Using Neural Networks over GPGPU

V Latin American Symposium on High Performance Computing

Juan Pablo Balarini, Martín Rodríguez and Sergio Nesmachnow

Centro de Cálculo, Facultad de Ingeniería Universidad de la República, Uruguay

Introduction

- A parallel neural network approach implemented over Graphic Processing Units (GPU) is used to solve a facial recognition problem, which consists in deciding where the face of a person in a certain image is pointing.
- Experimental evaluation demonstrates that a significant reduction on computing times can be achieved.
- Speedup greater than 8 is achieved when contrasted with a sequential implementation and classification rate superior to 85 % is also obtained.

GPU Computing

- GPUs were originally designed to exclusively perform the graphic processing in computers.
- In the last ten years, GPUs have been used as a powerful parallel hardware architecture to achieve efficiency in the execution of applications.
- Introduction of the CUDA architecture.

Face Pointing Direction

- The face pointing direction problem consists in recognizing where a human face is pointing (up, left, right and center) in a certain image.
- Practical applications include:
 - Detecting if a driver feel asleep

- Computer mouse for impaired people
- Digital camera software that only takes a photograph if everyone is looking
- In general sequential implementations are used

Artificial Neural Networks

- ANNs provide a general practical method for learning real-valued, discrete-valued, and vector-valued functions from examples
- Robust to errors in the training data
- Their main disadvantage is that the time needed for training can be quite high

ANN for Face Detection in GPU

- Training and execution time can be improved by using the parallel architecture of the GPU.
- An Artificial Neural Network is used to solve the face recognition problem, trained using the backpropagation algorithm.
- The proposed parallel implementation applies the ideas in the sequential algorithm by Shufelt and Mitchell.

Implementation Details

- Training and execution consist of a concatenation of functions that run in parallel.
- Before calling each function a functiondependent domain decomposition is applied. In general, certain GPU threads are assigned to execute over certain neurons on the ANN.

Implementation Details

 Domain decompositions are always performed to maximize the parallel execution and to avoid serializations in the memory access.

Experimental Analysis

- Development and Execution Platform
 - Two platforms were considered:

Development Platform	Execution Platform
AMD Athlon II X3 445 processor @ 3.10 GHz	Core i7-2600 processor @ 3.40 GHz processor
6 GB DDR3 RAM memory	16 GB DDR3 RAM memory
GeForce GTS 450 GPU with 1 GB of RAM	GeForce GTX 480 GPU with 1536 MB of RAM

 The limited computing power of the development platform did not allow taking full advantage of the parallel features proposed by the algorithm.

Experimental Analysis

Problem Instances

- Both sets used for training and classification were obtained from the work by Shufelt and Mitchell. These are images of different people in different poses.
- Five image sizes:
 - 32×30 pixels, 64×60, 128×120 pixels, 256×240 and 512×480
- There are about 620 images, which are divided in three sets, one for the network training and the other two to measure its effectiveness.

Results and Discussion

Execution Times

All execution times are the averages and its correspondent standard deviation values, computed in 50 independent execution of the parallel algorithm for each scenario.

Execution Platform

Results and Discussion

Solution Quality

Classification rates superior to 85% are achieved for both development and execution platform.

Execution Platform

Results and Discussion

Speedup greater than 8 is achieved

Conclusions and Future Work

 A parallel algorithm that executes on GPU achieves a speedup gain greater than 8 when contrasted with a CPU implementation.

14/15

- Accurate classification rates (> 85%) in reasonable execution times are achieved.
- The algorithm can be easily modified to recognize other features of a human face, without significant changes in the expected execution times.
- Future Work:
 - Improve the computational efficiency and classification rates.
 - Tackle other classification/image processing problems using ANNs implemented on GPU.

Thank you for your attention

Further information available at http://www.fing.edu.uy/inco/grupos/cecal/hpc