

HPCLATAM 2012
Proceedings

ISSN 2422-5207

HPCLATAM 2012
V Latin American Symposium on

High Performance Computing
Buenos Aires, Argentina

July 23-24, 2012

Conference Proceedings

E. Mocskos, S. Nesmachnow (editors)

July 2012

HPCLATAM 2012
V Latin American Symposium on High Performance Computing
Buenos Aires, Argentina
July 23-24, 2012

Conference Proceedings
Esteban Mocskos, Sergio Nesmachnow (editors)
ISSN 2422-5207

FOREWORD/PREFACE

This compilation publishes the papers presented in HPCLATAM 2012, the
V Latin American Symposium on High Performance Computing.

The use and development of High Performance Computing in Latin
America is steadily growing. The new challenges coming from the use of
the computing capabilities of clusters, grids, and distributed systems for
HPC, help to promote the research and innovation in this area.

Building on the great success of the previous four editions, in 2012 the
Latin American Symposium on High Performance Computing grew to
include three major events: the V HPCLATAM2012 International
Symposium (Buenos Aires, July 23-24), the High Performance Computing
School (ECAR 2012, Buenos Aires, July 25 to August 3), and the HPC Day
(La Plata, August 30) within the 41st Argentine Conference of Informatics
(41 JAIIO).

The HPCLATAM2012 International Symposium provided a regional forum
fostering the growth of the HPC community in Latin America through the
exchange and dissemination of new ideas, techniques, and research in
High Performance Computing. The symposium featured invited talks from
academy and industry, short- and full-paper sessions presenting both
mature work and new ideas in research and industrial applications. The
submitted articles presented contributions in the areas of Parallel
Algorithms and Architectures, High Performance Applications, Tools and
Environments for High Performance System Engineering, Graphics
Processing Units in High Performance Computing, Distributed and Grid
Computing, and Parallelism and Data Sharing on Multi-core Architectures.

In our opinion, the articles published in this book are valuable
contributions to the development of high performance computing in Latin
America.

Esteban Mocskos, Sergio Nesmachnow (editors)

July 2012

Esteban Mocskos, Universidad de Buenos Aires, Argentina, emocskos@dc.uba.ar

Sergio Nesmachnow, Universidad de la República, Uruguay, sergion@fing.edu.uy

HPCLATAM 2012

V Latin American Symposium on
High Performance Computing

ORGANIZATION/COMMITEES

CHAIRS

 Esteban Mocskos, Universidad de Buenos Aires, Argentina
 Sergio Nesmachnow, Universidad de la República, Uruguay

TECHNICAL PROGRAM COMMITTEE

 Adrián Cristal, Barcelona Supercomputing Center, Spain
 Andrés More, Intel, Argentina
 Alvaro Coutinho, Universidade Federal do Rio de Janeiro, Brasil
 Carlos Garcia Garino, Universidad Nacional de Cuyo, Argentina
 Cristian Perfumo, University of Newcastle, Australia
 Diego Crupnicoff, Mellanox Technologies, USA
 Eduardo Bringa, Universidad Nacional de Cuyo, Argentina
 Gerson Geraldo Cavalheiro, Universidade Federal de Pelotas, Brasil
 Gonzalo Hernández Oliva, Universidad de Valparaíso, Chile
 Francisco Brasileiro, Universidade Federal de Campina Grande, Brasil
 Marcela Printista, Universidad Nacional de San Luis, Argentina
 Mariano C. González Lebrero, Universidad de Buenos Aires, Argentina
 Mariano Vázquez, Barcelona Supercomputing Center, Spain
 Mario Storti, Universidad Nacional del Litoral, Argentina
 Miguel Angel Cavaliere, Tenaris Siderca and Universidad de Buenos

Aires, Argentina
 Nicolás Wolovick, Universidad Nacional de Córdoba, Argentina
 Pablo Mininni, Universidad de Buenos Aires, Argentina
 Alejandro Soba, CNEA-CONICET, Argentina
 Patricia Tissera, IAFE, Universidad de Buenos Aires, Argentina
 Ricardo Medel, Intel, Argentina
 Roberto Bevilacqua, Comisión Nacional de Energía Atómica,

Universidad de Buenos Aires, Universidad Nacional de San Martin,
Argentina

HPCLATAM 2012

V Latin American Symposium on High
Performance Computing Proceedings

INDEX

Parallel Adaptive Simulation of Coupled Incompressible Viscous
Flow and Advective-Diffusive Transport Using Stabilized FEM
Formulation

1-16

A Numerical Algorithm for the Solution of Viscous
Incompressible Flow on GPU’s

17-33

Parallel Computing Applied to Satellite Images Processing for
Solar Resource Estimates

34-48

Parallel conversion of satellite image information for a
wind energy generation forecasting model

49-64

Facial Recognition Using Neural Networks over GPGPU

65-80

Parallel implementations of the MinMin heterogeneous
computing scheduler in GPU

81-95

A parallel online GPU scheduler for large heterogeneous
computing systems

96-111

Biclustering of very large datasets with GPU technology using
CUDA

112-118

Optimizing Latency in Beowulf Clusters

119-132

SMCV: a Methodology for Detecting Transient Faults in
Multicore Clusters

133-148

Evolutionary Statistical System for applying in Forest Fire
Spread Prediction

149-161

Parallel Adaptive Simulation of Coupled
Incompressible Viscous Flow and

Advective-Diffusive Transport Using Stabilized
FEM Formulation

Andre Rossa1 and Alvaro Coutinho2

1 Engineering Simulation and Scientific Software,
Avenida Presidente Vargas, 3131, 20210-031,

Rio de Janeiro, Brazil
andre.rossa@esss.com.br

http://www.esss.com.br
2 High-Performance Computing Center, Department of Civil Engineering,

Federal University of Rio de Janeiro,
Cidade Universitária, Centro de Tecnologia, Bloco I, Sala I-248, 21941-972

Rio de Janeiro, Brazil
alvaro@nacad.ufrj.br

http://www.nacad.ufrj.br

Abstract. In this work we study coupled incompressible viscous flow
and advective-diffusive transport of a scalar. Both the Navier-Stokes
and transport equations are solved using an Eulerian approach. The
SUPG/PSPG stabilized finite element formulation is applied for the 8-
node isoparametric hexahedron. The implementation is held using the
libMEsh finite element library which provides the support for adaptive
mesh refinement and coarsening and parallel computation. The Rayleigh-
Bénard natural convection and the planar lock-exchange density current
problems are solved to assess the adaptive parallel performance of the
numerical solution.

Keywords: Stabilized FEM formulation, incompressible flows, adaptive
meshes, parallel computing.

1 Introduction

The numerical simulation of current engineering problems would not be feasible
without the advent of parallel computing. Even with the development of tech-
niques for mesh adaptation, the fastest available processors are not able to solve,
within a practical period of time, problems that have large amounts of degrees
of freedom. High-performance computing (HPC) have enabled the solution of
problems with a large number of unknowns and high complexity (often involv-
ing multiple scales and multiple physics) by clusters of computers installed in
universities as well in industry research centers.

Parallel Adaptive Simulation of Coupled
Incompressible Viscous Flow and

Advective-Diffusive Transport Using Stabilized
FEM Formulation

Andre Rossa1 and Alvaro Coutinho2

1 Engineering Simulation and Scientific Software,
Avenida Presidente Vargas, 3131, 20210-031,

Rio de Janeiro, Brazil
andre.rossa@esss.com.br

http://www.esss.com.br
2 High-Performance Computing Center, Department of Civil Engineering,

Federal University of Rio de Janeiro,
Cidade Universitária, Centro de Tecnologia, Bloco I, Sala I-248, 21941-972

Rio de Janeiro, Brazil
alvaro@nacad.ufrj.br

http://www.nacad.ufrj.br

Abstract. In this work we study coupled incompressible viscous flow
and advective-diffusive transport of a scalar. Both the Navier-Stokes
and transport equations are solved using an Eulerian approach. The
SUPG/PSPG stabilized finite element formulation is applied for the 8-
node isoparametric hexahedron. The implementation is held using the
libMEsh finite element library which provides the support for adaptive
mesh refinement and coarsening and parallel computation. The Rayleigh-
Bénard natural convection and the planar lock-exchange density current
problems are solved to assess the adaptive parallel performance of the
numerical solution.

Keywords: Stabilized FEM formulation, incompressible flows, adaptive
meshes, parallel computing.

1 Introduction

The numerical simulation of current engineering problems would not be feasible
without the advent of parallel computing. Even with the development of tech-
niques for mesh adaptation, the fastest available processors are not able to solve,
within a practical period of time, problems that have large amounts of degrees
of freedom. High-performance computing (HPC) have enabled the solution of
problems with a large number of unknowns and high complexity (often involv-
ing multiple scales and multiple physics) by clusters of computers installed in
universities as well in industry research centers.

HPCLatAm 2012, pp. 1-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 1 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

2 Andre Rossa and Alvaro Coutinho

To make HPC be efficiently used, a set of algorithms and computational
methods have been developed over the last decade that made possible high fi-
delity solution of complex problems. Processors with multiple cores with shared
memory, clusters of personal computers in which each processor has its own
memory (distributed memory) and more recently, the hybrid memory architec-
tures are present on the daily work of engineers and researchers.

Although improving the processing capacity parallel computation have added
complexity to the computer codes programing. According to [1] scaling perfor-
mance is particularly problematic because the vision of seamless scalability can-
not be achieved without having the applications scale automatically as the num-
ber of processors increases. However, for this to happen, the applications have to
be programmed to exploit parallelism efficiently. Therefore, parallel computing
resources should be used rationally in order to obtain compatible performances.

Good simulation practice suggests that the applications and algorithms em-
ployed in HPC should be optimized for this purpose. Currently there are available
(mostly freely distributed) several programs to perform different tasks inherent
to parallel computing. The domain partitioning and load balancing, information
exchange between processors, algebraic operations and linear preconditioned sys-
tems solving are some of the necessary operations and have specific computa-
tional libraries that can be incorporated into the implementation of a numerical
simulator.

In order to keep the focus on the issues related to the numerical problem,
we use the libMesh framework, which is a C++ library for parallel adaptive
mesh refinement/coarsening numerical multiphysics simulations based on the fi-
nite element method [2]. The library has been developed since 2002 by a group
of researchers from CFDLab, Department of Aerospace Engineering and Engi-
neering Mechanics, University of Texas at Austin, and is available as open source
software (http://libmesh.sourceforge.net/).

In this work we implement stabilized finite element formulations for the
Navier-Stokes and advective-diffusive transport in libMesh. Parallel adaptive
simulations of coupled problems confirm the mesh size reduction potential and
the ability to capture the solution lower scales as well the development of the
interface between the fluids in evolution problems.

The remaining of this work is organized as follows. In the next section the
dimensionless governing equations for the coupled viscous flow and transport
is presented together with correspondent stabilized SUPG/PSPG finite element
method (FEM) formulation. Details of the adaptive mesh refinement/coarsening
(AMR/C) in the context of the libMesh library as well some aspects of the paral-
lel solution of precondiotioned linear systems are presented in Section 3. Section
4 presents the results of the parallel adaptive simulation of the Rayleigh-Bnard
natural convection and a density current in a planar lock-exchange configuration.
The paper ends with the main conclusions.

2 Andre Rossa and Alvaro Coutinho

To make HPC be efficiently used, a set of algorithms and computational
methods have been developed over the last decade that made possible high fi-
delity solution of complex problems. Processors with multiple cores with shared
memory, clusters of personal computers in which each processor has its own
memory (distributed memory) and more recently, the hybrid memory architec-
tures are present on the daily work of engineers and researchers.

Although improving the processing capacity parallel computation have added
complexity to the computer codes programing. According to [1] scaling perfor-
mance is particularly problematic because the vision of seamless scalability can-
not be achieved without having the applications scale automatically as the num-
ber of processors increases. However, for this to happen, the applications have to
be programmed to exploit parallelism efficiently. Therefore, parallel computing
resources should be used rationally in order to obtain compatible performances.

Good simulation practice suggests that the applications and algorithms em-
ployed in HPC should be optimized for this purpose. Currently there are available
(mostly freely distributed) several programs to perform different tasks inherent
to parallel computing. The domain partitioning and load balancing, information
exchange between processors, algebraic operations and linear preconditioned sys-
tems solving are some of the necessary operations and have specific computa-
tional libraries that can be incorporated into the implementation of a numerical
simulator.

In order to keep the focus on the issues related to the numerical problem,
we use the libMesh framework, which is a C++ library for parallel adaptive
mesh refinement/coarsening numerical multiphysics simulations based on the fi-
nite element method [2]. The library has been developed since 2002 by a group
of researchers from CFDLab, Department of Aerospace Engineering and Engi-
neering Mechanics, University of Texas at Austin, and is available as open source
software (http://libmesh.sourceforge.net/).

In this work we implement stabilized finite element formulations for the
Navier-Stokes and advective-diffusive transport in libMesh. Parallel adaptive
simulations of coupled problems confirm the mesh size reduction potential and
the ability to capture the solution lower scales as well the development of the
interface between the fluids in evolution problems.

The remaining of this work is organized as follows. In the next section the
dimensionless governing equations for the coupled viscous flow and transport
is presented together with correspondent stabilized SUPG/PSPG finite element
method (FEM) formulation. Details of the adaptive mesh refinement/coarsening
(AMR/C) in the context of the libMesh library as well some aspects of the paral-
lel solution of precondiotioned linear systems are presented in Section 3. Section
4 presents the results of the parallel adaptive simulation of the Rayleigh-Bnard
natural convection and a density current in a planar lock-exchange configuration.
The paper ends with the main conclusions.

HPCLatAm 2012, pp. 2-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 2 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Parallel Adaptive Simulation of Incompressible Viscous Flow 3

2 Mathematical Formulation

2.1 Governing Equations

Assuming an unsteady incompressible viscous flow and the Bousinessq approxi-
mation, the dimensionless Navier-Stokes, continuity and scalar transport equa-
tions3 can be written in a non-conservative way following a Eulerian description
as

∂u

∂t
+ u∇u− 1

Re
∇2u +∇p =

Gr

Re2
φe in Ω × [0, t] , (1)

∇ · u = 0 in Ω × [0, t] , (2)

∂φ

∂t
+ u · ∇φ− 1

D
∇2φ = 0 in Ω × [0, t] . (3)

defined in the simulation domain Ω which is surrounded by the smooth boundary
Γ . The time is t, u = (u, v, w)

T
is the velocity field, p is the pressure and φ the

scalar being transported and

e =
g

‖g‖
(4)

is an unit vector aligned with the gravity g.
In (1) Re and Gr are the Reynolds and Grashof numbers. The parameter D

in equation (3) represents a dimensionless diffusive constant depending on the
nature of the scalar being transported (e.g., the Peclet number for the temper-
ature transport).

The essential and natural boundaries conditions are:

u = g on Γg ,

n ·
[

1

Re

(
∇u + (∇u)

T
)
− pI

]
= h on Γσ ,

φ = φ on Γφ,

−n · ∇φ = q on Γq

(5)

where n is the unit outward normal vector on the boundary and I is the 3 × 3
identity matrix.

The initial conditions are:

u (x, 0) = u0 ,

φ (x, 0) = φ0
(6)

where the initial velocity field u0 is divergent free.

3 Details on how the physical quantities may be normalized in order to arrive at
dimensionless equations can be found at [3].

Parallel Adaptive Simulation of Incompressible Viscous Flow 3

2 Mathematical Formulation

2.1 Governing Equations

Assuming an unsteady incompressible viscous flow and the Bousinessq approxi-
mation, the dimensionless Navier-Stokes, continuity and scalar transport equa-
tions3 can be written in a non-conservative way following a Eulerian description
as

∂u

∂t
+ u∇u− 1

Re
∇2u +∇p =

Gr

Re2
φe in Ω × [0, t] , (1)

∇ · u = 0 in Ω × [0, t] , (2)

∂φ

∂t
+ u · ∇φ− 1

D
∇2φ = 0 in Ω × [0, t] . (3)

defined in the simulation domain Ω which is surrounded by the smooth boundary
Γ . The time is t, u = (u, v, w)

T
is the velocity field, p is the pressure and φ the

scalar being transported and

e =
g

‖g‖
(4)

is an unit vector aligned with the gravity g.
In (1) Re and Gr are the Reynolds and Grashof numbers. The parameter D

in equation (3) represents a dimensionless diffusive constant depending on the
nature of the scalar being transported (e.g., the Peclet number for the temper-
ature transport).

The essential and natural boundaries conditions are:

u = g on Γg ,

n ·
[

1

Re

(
∇u + (∇u)

T
)
− pI

]
= h on Γσ ,

φ = φ on Γφ,

−n · ∇φ = q on Γq

(5)

where n is the unit outward normal vector on the boundary and I is the 3 × 3
identity matrix.

The initial conditions are:

u (x, 0) = u0 ,

φ (x, 0) = φ0
(6)

where the initial velocity field u0 is divergent free.

3 Details on how the physical quantities may be normalized in order to arrive at
dimensionless equations can be found at [3].

HPCLatAm 2012, pp. 3-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 3 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

4 Andre Rossa and Alvaro Coutinho

In gravity current problems, the concept of buoyancy velocity ub is largely
used (see [5]). It may be defined as

ub :=
√
g′hv (7)

where hv is a scale length related to the vertical dimension of the simulation
domain (usually taken as the domain height) and g

′
is called the reduced gravity

given by

g
′

:= g
ρ1 − ρ2
ρ∞

(8)

where g is the absolute value of the gravitational acceleration, ρ∞ is the reference
density, ρ1 is the density of the “heavy” fluid and ρ2 is the density of the “light”
fluid.

When one uses the buoyancy velocity as a reference velocity and hv as the
scale length, the Reynolds number may be computed directly from the Grashof
as follow

Re =
√
Gr . (9)

For particle-driven problems (a class of gravity current phenomenon), where
the transported scalar is the density ρ, the diffusivity constant is given by the
product of the Schmidt Sc and Grashof numbers. Taking it into account, the
Navier-Stokes and advective-diffusive equations may be rewritten as

∂u

∂t
+ u∇u− 1√

Gr
∇2u +∇p = ρe , (10)

∂ρ

∂t
+ u · ∇ρ− 1

ScGr
∇2ρ = 0 . (11)

2.2 Stabilized Finite Element Formulation

Given a suitably defined finite-dimensional trial solution and weight functions
spaces for velocity and pressure

Shu =
{

uh | uh ∈
[
H1h (Ω)

]3
, uh

.
= gh em Γg

}
,

V hw =
{

wh | wh ∈
[
H1h (Ω)

]3
, wh .

= 0 em Γg

}
,

Shp = V hp =
{
qh | qh ∈ H1h (Ω)

} (12)

where H1h (Ω) is the finite-dimensional space function square integrable into
the element domain, the stabilized SUPG/PSPG FEM formulation for the non-
dimensional Navier-Stokes and continuity equations (1) and (2) can be written

4 Andre Rossa and Alvaro Coutinho

In gravity current problems, the concept of buoyancy velocity ub is largely
used (see [5]). It may be defined as

ub :=
√
g′hv (7)

where hv is a scale length related to the vertical dimension of the simulation
domain (usually taken as the domain height) and g

′
is called the reduced gravity

given by

g
′

:= g
ρ1 − ρ2
ρ∞

(8)

where g is the absolute value of the gravitational acceleration, ρ∞ is the reference
density, ρ1 is the density of the “heavy” fluid and ρ2 is the density of the “light”
fluid.

When one uses the buoyancy velocity as a reference velocity and hv as the
scale length, the Reynolds number may be computed directly from the Grashof
as follow

Re =
√
Gr . (9)

For particle-driven problems (a class of gravity current phenomenon), where
the transported scalar is the density ρ, the diffusivity constant is given by the
product of the Schmidt Sc and Grashof numbers. Taking it into account, the
Navier-Stokes and advective-diffusive equations may be rewritten as

∂u

∂t
+ u∇u− 1√

Gr
∇2u +∇p = ρe , (10)

∂ρ

∂t
+ u · ∇ρ− 1

ScGr
∇2ρ = 0 . (11)

2.2 Stabilized Finite Element Formulation

Given a suitably defined finite-dimensional trial solution and weight functions
spaces for velocity and pressure

Shu =
{

uh | uh ∈
[
H1h (Ω)

]3
, uh

.
= gh em Γg

}
,

V hw =
{

wh | wh ∈
[
H1h (Ω)

]3
, wh .

= 0 em Γg

}
,

Shp = V hp =
{
qh | qh ∈ H1h (Ω)

} (12)

where H1h (Ω) is the finite-dimensional space function square integrable into
the element domain, the stabilized SUPG/PSPG FEM formulation for the non-
dimensional Navier-Stokes and continuity equations (1) and (2) can be written

HPCLatAm 2012, pp. 4-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 4 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Parallel Adaptive Simulation of Incompressible Viscous Flow 5

as: Find uh ∈ Shu and ph ∈ Shp such as, ∀wh ∈ V hw and ∀qh ∈ V hp ,∫
Ω

wh ·
[(

∂uh

∂t
+ uh∇uh

)
− lh

]
dΩ +

1

Re

∫
Ω

(
∇wh

)T · ∇uhIdΩ−∫
Ω

∇whphIdΩ −
∫
Γ

wh · hhdΓ +

∫
Ω

qh∇ · uhdΩ+

nel∑
e=1

∫
Ωe

(
τSUPGuh∇wh

)
·
[(

∂uh

∂t
+ uh∇uh

)
+∇ph − lh

]
dΩe+

nel∑
e=1

∫
Ωe

(
τPSPG∇qh

)
·
[(

∂uh

∂t
+ uh∇uh

)
+∇ph − lh

]
dΩe = 0 .

(13)

The first four integrals in (13) arise from the classical Galerkin weak formu-
lation for the Navier-Stokes equations. The fifth integral represents the classical
Galerkin formulation for the continuity equation. The summations over the ele-
ments are the SUPG and the PSPG stabilizations for the Navier-Stokes equation.
The parameters adopted for both stabilizations were obtained from [4] and are
defined as follows

τSUPG = τPSPG =

(2

∥∥uh∥∥
h

)2

+ 9

(
4

Reh2

)2
− 1

2

. (14)

The dimensionless stabilizations parameters are local (element level) so, the
velocity modulus

∥∥uh∥∥ is calculated for each element e and h is an element length
measure based in its volume V as shown bellow

h =
3

√
6V

π
. (15)

The discretized dimensionless body force are represented by lh.
For the dimensionless advective-diffusive transport we adopt the same as-

sumptions, so given the following finite-dimensional trial solution and weight
functions spaces for the scalar

Shφ =
{
φh | φh ∈ H1h (Ω) , φh

.
= φ

h
in Γφ

}
,

V hw =
{
wh | wh ∈ H1h (Ω) , wh

.
= 0 em Γφ

} (16)

the stabilized FEM formulation can be written as: Find φh ∈ Shφ such as, ∀wh ∈
V hw ,∫

Ω

wh ·
(
∂φh

∂t
+ uh · ∇φh

)
dΩ +

1

D

∫
Ω

(
∇wh

)T · ∇φhdΩ − ∫
Γ

whqdΓ+

nel∑
e=1

∫
Ωe

(
τSUPGuh · ∇wh

)
·
[(

∂φh

∂t
+ uh · ∇φh

)]
dΩe = 0 .

(17)

Parallel Adaptive Simulation of Incompressible Viscous Flow 5

as: Find uh ∈ Shu and ph ∈ Shp such as, ∀wh ∈ V hw and ∀qh ∈ V hp ,∫
Ω

wh ·
[(

∂uh

∂t
+ uh∇uh

)
− lh

]
dΩ +

1

Re

∫
Ω

(
∇wh

)T · ∇uhIdΩ−∫
Ω

∇whphIdΩ −
∫
Γ

wh · hhdΓ +

∫
Ω

qh∇ · uhdΩ+

nel∑
e=1

∫
Ωe

(
τSUPGuh∇wh

)
·
[(

∂uh

∂t
+ uh∇uh

)
+∇ph − lh

]
dΩe+

nel∑
e=1

∫
Ωe

(
τPSPG∇qh

)
·
[(

∂uh

∂t
+ uh∇uh

)
+∇ph − lh

]
dΩe = 0 .

(13)

The first four integrals in (13) arise from the classical Galerkin weak formu-
lation for the Navier-Stokes equations. The fifth integral represents the classical
Galerkin formulation for the continuity equation. The summations over the ele-
ments are the SUPG and the PSPG stabilizations for the Navier-Stokes equation.
The parameters adopted for both stabilizations were obtained from [4] and are
defined as follows

τSUPG = τPSPG =

(2

∥∥uh∥∥
h

)2

+ 9

(
4

Reh2

)2
− 1

2

. (14)

The dimensionless stabilizations parameters are local (element level) so, the
velocity modulus

∥∥uh∥∥ is calculated for each element e and h is an element length
measure based in its volume V as shown bellow

h =
3

√
6V

π
. (15)

The discretized dimensionless body force are represented by lh.
For the dimensionless advective-diffusive transport we adopt the same as-

sumptions, so given the following finite-dimensional trial solution and weight
functions spaces for the scalar

Shφ =
{
φh | φh ∈ H1h (Ω) , φh

.
= φ

h
in Γφ

}
,

V hw =
{
wh | wh ∈ H1h (Ω) , wh

.
= 0 em Γφ

} (16)

the stabilized FEM formulation can be written as: Find φh ∈ Shφ such as, ∀wh ∈
V hw ,∫

Ω

wh ·
(
∂φh

∂t
+ uh · ∇φh

)
dΩ +

1

D

∫
Ω

(
∇wh

)T · ∇φhdΩ − ∫
Γ

whqdΓ+

nel∑
e=1

∫
Ωe

(
τSUPGuh · ∇wh

)
·
[(

∂φh

∂t
+ uh · ∇φh

)]
dΩe = 0 .

(17)

HPCLatAm 2012, pp. 5-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 5 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

6 Andre Rossa and Alvaro Coutinho

The three first integrals in (17) come from the Galerkin weak formulation.
The integral into the summation over the elements is the SUPG stabilization.
The non-dimensional stabilization parameter is computed similarly to (14), that
is:

τSUPG =

(2

∥∥uh∥∥
h

)2

+ 9

(
4

Dh2

)2
− 1

2

. (18)

In the stabilized formulations (17), an additional stabilization is added to
handle instabilities in the numerical solution of flows with presence of strong
gradients of the scalar being transported. [6] present a discontinuity capturing
term which is calculated as follows:

nel∑
e=1

∫
Ωe

δ
(
φh
)
∇wh · ∇φhdΩe . (19)

Because the δ parameter is a function of the scalar, (17) can be understood
as a nonlinear diffusion operator. In this work, the δ parameter was adapted
from [6] as follows in dimensionless form

δ
(
φh
)

=

∣∣∣∣ 1

φ∗
R
(
φh
)∣∣∣∣
(

3∑
i=1

∣∣∣∣ 1

φ∗
∂φh

∂xi

∣∣∣∣2
)β/2−1

h

2

β

(20)

where φ∗ is a dimensionless value of the scalar (usually taken as 1) and R
(
φh
)

is an approximation for the actual residual defined as:

R
(
φh
)

=
∂φh

∂t
+ uh · ∇φh . (21)

The β parameter can be set as 1 or 2.

2.3 Discretized Systems

Adopting the implicit backward Euler scheme for the time discretization together
with a fixed point linearization, the final discrete system of (13) and (17) results
in

(M + Mτ) un+1,k+1 +∆t
(
N
(
un+1,k

)
+ Nτ

(
un+1,k

)
+ K

)
un+1,k+1−

∆t (G−Gτ) pn+1,k+1 = ∆t (f (φn) + fτ (φn)) + (M + Mτ) un ,
(22)

∆tGTun+1,k+1 + Mξu
n+1,k+1 +∆t

(
Nξ

(
un+1,k

)
un+1,k+1 + Gξp

n+1,k+1
)

=

∆tfξ (φn) + Mξu
n ,

(23)

6 Andre Rossa and Alvaro Coutinho

The three first integrals in (17) come from the Galerkin weak formulation.
The integral into the summation over the elements is the SUPG stabilization.
The non-dimensional stabilization parameter is computed similarly to (14), that
is:

τSUPG =

(2

∥∥uh∥∥
h

)2

+ 9

(
4

Dh2

)2
− 1

2

. (18)

In the stabilized formulations (17), an additional stabilization is added to
handle instabilities in the numerical solution of flows with presence of strong
gradients of the scalar being transported. [6] present a discontinuity capturing
term which is calculated as follows:

nel∑
e=1

∫
Ωe

δ
(
φh
)
∇wh · ∇φhdΩe . (19)

Because the δ parameter is a function of the scalar, (17) can be understood
as a nonlinear diffusion operator. In this work, the δ parameter was adapted
from [6] as follows in dimensionless form

δ
(
φh
)

=

∣∣∣∣ 1

φ∗
R
(
φh
)∣∣∣∣
(

3∑
i=1

∣∣∣∣ 1

φ∗
∂φh

∂xi

∣∣∣∣2
)β/2−1

h

2

β

(20)

where φ∗ is a dimensionless value of the scalar (usually taken as 1) and R
(
φh
)

is an approximation for the actual residual defined as:

R
(
φh
)

=
∂φh

∂t
+ uh · ∇φh . (21)

The β parameter can be set as 1 or 2.

2.3 Discretized Systems

Adopting the implicit backward Euler scheme for the time discretization together
with a fixed point linearization, the final discrete system of (13) and (17) results
in

(M + Mτ) un+1,k+1 +∆t
(
N
(
un+1,k

)
+ Nτ

(
un+1,k

)
+ K

)
un+1,k+1−

∆t (G−Gτ) pn+1,k+1 = ∆t (f (φn) + fτ (φn)) + (M + Mτ) un ,
(22)

∆tGTun+1,k+1 + Mξu
n+1,k+1 +∆t

(
Nξ

(
un+1,k

)
un+1,k+1 + Gξp

n+1,k+1
)

=

∆tfξ (φn) + Mξu
n ,

(23)

HPCLatAm 2012, pp. 6-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 6 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Parallel Adaptive Simulation of Incompressible Viscous Flow 7

(M + Mτ)φn+1,k+1+

∆t
(
N
(
un+1

)
+ Nτ

(
un+1

)
+ K + Kδ

(
φn+1,k

))
φn+1,k+1 =

(M + Mτ)φn .

(24)

In the matrix systems (22), (23) and (24) u, p and φ are the nodal vectors
of the correspondent unknowns uh, ph and φh, and ∆t stands for the time-step
size. The super indexes n + 1 and n mean the current and previous time-steps
while k + 1 and k are respectively the current and previous nonlinear iterations
counter.

For the matrices where the advective operator appears, i.e., Galerkin advec-
tion, SUPG mass and advection, and PSPG advection, the velocity components
are evaluated at each integration point. M is the mass matrix, K is the vis-
cous/diffusive matrix, N (u) is the nonlinear advection matrix, G and GT are
the gradient and its transpose (divergent) matrices. f is the body force vector.
Kδ (φ) is the nonlinear discontinuity capturing matrix. The matrices and vectors
with the subscripts τ and ξ mean the SUPG and PSPG terms.

3 Computational Aspects

3.1 Mesh Adaptivity

The mesh adaptivity together with high-performance computing (parallel pro-
cessing) play a key role to enable numerical simulations of actual engineer-
ing/industrial problems within an acceptable time without exhausting the pro-
cessing capacity of current computers.

Particularly for the density current problem, AMR/C is a important tool to
capture and track the flow structure at the front, where the Kelvin-Helmholtz
billows occur. From an initial coarse mesh, the adaptivity refinement process
begins near the interface between the two fluids and it follows its development.

In libMesh the mesh refinement can be accomplished by element subdivision
(h-refinement), increasing the local polynomial degree (p-refinement) as well a
combination of both methods (hp-refinement). Although there is an extensive
literature devoted to obtaining reliable a posteriori estimators that are more
closely linked to the operators and governing equations [7, 8], in libMesh the
error indicator is focused on local indicators that are essentially independent of
the physics [2].

libMesh uses a statistical refinement/coarsening scheme based on the ideas
presented in [9] where the mean µ and the standard deviation σ of the error
indicator “population” are computed. Using refinement and coarsening fractions
(rf and rc), the elements are flagged for refinement and coarsening as showed in
Fig. (1).

This scheme is suitable for evolution problems where, in the beginning, a
small error is evenly distributed. Throughout the simulation the error distribu-
tion spreads and the AMR/C process starts. Whether the solution approaches

Parallel Adaptive Simulation of Incompressible Viscous Flow 7

(M + Mτ)φn+1,k+1+

∆t
(
N
(
un+1

)
+ Nτ

(
un+1

)
+ K + Kδ

(
φn+1,k

))
φn+1,k+1 =

(M + Mτ)φn .

(24)

In the matrix systems (22), (23) and (24) u, p and φ are the nodal vectors
of the correspondent unknowns uh, ph and φh, and ∆t stands for the time-step
size. The super indexes n + 1 and n mean the current and previous time-steps
while k + 1 and k are respectively the current and previous nonlinear iterations
counter.

For the matrices where the advective operator appears, i.e., Galerkin advec-
tion, SUPG mass and advection, and PSPG advection, the velocity components
are evaluated at each integration point. M is the mass matrix, K is the vis-
cous/diffusive matrix, N (u) is the nonlinear advection matrix, G and GT are
the gradient and its transpose (divergent) matrices. f is the body force vector.
Kδ (φ) is the nonlinear discontinuity capturing matrix. The matrices and vectors
with the subscripts τ and ξ mean the SUPG and PSPG terms.

3 Computational Aspects

3.1 Mesh Adaptivity

The mesh adaptivity together with high-performance computing (parallel pro-
cessing) play a key role to enable numerical simulations of actual engineer-
ing/industrial problems within an acceptable time without exhausting the pro-
cessing capacity of current computers.

Particularly for the density current problem, AMR/C is a important tool to
capture and track the flow structure at the front, where the Kelvin-Helmholtz
billows occur. From an initial coarse mesh, the adaptivity refinement process
begins near the interface between the two fluids and it follows its development.

In libMesh the mesh refinement can be accomplished by element subdivision
(h-refinement), increasing the local polynomial degree (p-refinement) as well a
combination of both methods (hp-refinement). Although there is an extensive
literature devoted to obtaining reliable a posteriori estimators that are more
closely linked to the operators and governing equations [7, 8], in libMesh the
error indicator is focused on local indicators that are essentially independent of
the physics [2].

libMesh uses a statistical refinement/coarsening scheme based on the ideas
presented in [9] where the mean µ and the standard deviation σ of the error
indicator “population” are computed. Using refinement and coarsening fractions
(rf and rc), the elements are flagged for refinement and coarsening as showed in
Fig. (1).

This scheme is suitable for evolution problems where, in the beginning, a
small error is evenly distributed. Throughout the simulation the error distribu-
tion spreads and the AMR/C process starts. Whether the solution approaches

HPCLatAm 2012, pp. 7-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 7 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

8 Andre Rossa and Alvaro Coutinho

e

P(e)

Elements selected

for refinement

Elements selected

for coarsening

rf

rcm-s

m+s

m+sm-s m

Fig. 1. Statistical refinement: elements in hatched areas are flagged to AMR/C process.

its steady-state, the distribution of error also reaches the steady-state, stopping
the AMR/C process.

The elements are refined through a “natural refinement” scheme: elements of
dimension d, with the exception of the pyramids, produce 2d elements of the same
type after refinement. The degrees of freedom are constrained at the hanging
nodes on element interfaces. This approach yields a tree data structure formed
by the “parents” and their “children” elements. The elements present in the
initial mesh (level-0 elements) have no parents as well the active elements (those
that are part of the current simulation mesh) have no children, so the latter are
the current high-level elements. The element level is determined recursively from
its parents and the user should determine the maximum refinement level.

The frequency of refinement/coarsening is an user’s responsibility. When the
mesh adapts it is optimized for the state at the current time [10]. One should find
a frequency of adaptivity which will balance the computational effort and quality
of results as there is a computational cost associated with the adaptivity process.
When the mesh is adapted, the field solution should be projected (interpolated)
and a simulation should be performed on the new mesh.

In this work we use a class of errors estimators based on derivative jump (or
flux jump) of the transported scalar calculated at the elements interface called
Kelly’s Error Estimator [11] to perform the h-refinement. The refinement and
coarsening fractions for the statistical strategy as well the adaptivity frequency
are set independently for each simulation problem.

3.2 Domain Decomposition

In this paper, we consider the standard partitioning domain without overlap, as
shown in Fig. (2), where the elements related to each of the sub-domains are
assigned to different processors. That is, the simulation domain Ωh is divided
into a discrete set of sub-domains Ωhp such as

⋃
Ωhp = Ωh and

⋂
Ωhp = ∅.

8 Andre Rossa and Alvaro Coutinho

e

P(e)

Elements selected

for refinement

Elements selected

for coarsening

rf

rcm-s

m+s

m+sm-s m

Fig. 1. Statistical refinement: elements in hatched areas are flagged to AMR/C process.

its steady-state, the distribution of error also reaches the steady-state, stopping
the AMR/C process.

The elements are refined through a “natural refinement” scheme: elements of
dimension d, with the exception of the pyramids, produce 2d elements of the same
type after refinement. The degrees of freedom are constrained at the hanging
nodes on element interfaces. This approach yields a tree data structure formed
by the “parents” and their “children” elements. The elements present in the
initial mesh (level-0 elements) have no parents as well the active elements (those
that are part of the current simulation mesh) have no children, so the latter are
the current high-level elements. The element level is determined recursively from
its parents and the user should determine the maximum refinement level.

The frequency of refinement/coarsening is an user’s responsibility. When the
mesh adapts it is optimized for the state at the current time [10]. One should find
a frequency of adaptivity which will balance the computational effort and quality
of results as there is a computational cost associated with the adaptivity process.
When the mesh is adapted, the field solution should be projected (interpolated)
and a simulation should be performed on the new mesh.

In this work we use a class of errors estimators based on derivative jump (or
flux jump) of the transported scalar calculated at the elements interface called
Kelly’s Error Estimator [11] to perform the h-refinement. The refinement and
coarsening fractions for the statistical strategy as well the adaptivity frequency
are set independently for each simulation problem.

3.2 Domain Decomposition

In this paper, we consider the standard partitioning domain without overlap, as
shown in Fig. (2), where the elements related to each of the sub-domains are
assigned to different processors. That is, the simulation domain Ωh is divided
into a discrete set of sub-domains Ωhp such as

⋃
Ωhp = Ωh and

⋂
Ωhp = ∅.

HPCLatAm 2012, pp. 8-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 8 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Parallel Adaptive Simulation of Incompressible Viscous Flow 9

Fig. 2. Simulation domain decomposition in 8 sub-domains.

In AMR/C computations at new stage adaptation, regions of the domain will
have an increase in mesh element density while in others, the number of elements
will decrease. These dynamic mesh adjustments result for some processors in
significant increasing (or decreasing) work therefore causing unbalanced load
[1].

Libraries such as METIS and ParMETIS were developed aiming implement-
ing efficient partitioning mesh schemes. The first is a serial library partition-
ing, while the second is based on parallel MPI. Both can also reorder the un-
knowns in unstructured grids to minimize the fill-in during LU factorization.
The ParMETIS extends the functionality provided by METIS and includes rou-
tines for parallel computations with adaptive meshes refinement and large-scale
numerical simulations.

3.3 Parallel Solution of Preconditioned Linear Systems

The support for the numerical solution of the differential equations in the par-
allel architecture environment is provided by PETSc. It provides structures for
efficient storage (vectors, arrays, for example), as well ways to handle it. The
libMesh uses compressed sparse row (CSR) structure. The PETSc has a num-
ber of methods for solving linear sparse system as GMRES and BiConjugate
Gradient method (BiCG) and several types of preconditioners as ILU(k) and
Block-Jacobi. Options for reordering the linear system as the Reverse Cuthill-
McKee method (RCM, [12]) are also available.

In this work we use Block-Jacobi sub-domain preconditioning. It is one of
the most widely used schemes due to its easiness of implementation. There are

Parallel Adaptive Simulation of Incompressible Viscous Flow 9

Fig. 2. Simulation domain decomposition in 8 sub-domains.

In AMR/C computations at new stage adaptation, regions of the domain will
have an increase in mesh element density while in others, the number of elements
will decrease. These dynamic mesh adjustments result for some processors in
significant increasing (or decreasing) work therefore causing unbalanced load
[1].

Libraries such as METIS and ParMETIS were developed aiming implement-
ing efficient partitioning mesh schemes. The first is a serial library partition-
ing, while the second is based on parallel MPI. Both can also reorder the un-
knowns in unstructured grids to minimize the fill-in during LU factorization.
The ParMETIS extends the functionality provided by METIS and includes rou-
tines for parallel computations with adaptive meshes refinement and large-scale
numerical simulations.

3.3 Parallel Solution of Preconditioned Linear Systems

The support for the numerical solution of the differential equations in the par-
allel architecture environment is provided by PETSc. It provides structures for
efficient storage (vectors, arrays, for example), as well ways to handle it. The
libMesh uses compressed sparse row (CSR) structure. The PETSc has a num-
ber of methods for solving linear sparse system as GMRES and BiConjugate
Gradient method (BiCG) and several types of preconditioners as ILU(k) and
Block-Jacobi. Options for reordering the linear system as the Reverse Cuthill-
McKee method (RCM, [12]) are also available.

In this work we use Block-Jacobi sub-domain preconditioning. It is one of
the most widely used schemes due to its easiness of implementation. There are

HPCLatAm 2012, pp. 9-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 9 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

10 Andre Rossa and Alvaro Coutinho

no overlap between the blocks. The incomplete factorization may be applied
to each of them without extra cost in communication. However, in adaptive
simulations, the new local factorization should be performed every time the
mesh is modified since the adaptivity changes the group of elements residing in
each sub-domain [13]. It is usual to refer to the Block-Jabobi preconditioning
strategy in conjunction with the ILU factorization with a certain level k of fill-in
by BILU(k) [14].

The communication between the processors, such as required for the algebraic
operations or during assembly of arrays of elements are supported by a set of
PETSc library routines which is designed for parallel computing using the MPI
API.

4 Numerical Results

The simulations were performed in a SGI Altix ICE 8400 cluster with 640 cores
(Intel Nehalem). This machine has 1.28 TB of distributed memory. The pro-
cessing nodes are connected by InfiniBand. The cluster is located at the High-
Performance Computing Center (NACAD) of the Federal University of Rio de
Janeiro, Brazil.

4.1 Parallel Adaptive Simulation of the Rayleigh-Bénard Problem

In this example we consider the Rayleigh-Bénard natural convection in a con-
tainer with geometric domain Ω = [0, 4]× [0, 1]× [0, 1]. This problem consists to
solve a natural convection phenomenon of a fluid which initially at rest (t = 0)
produces a sequence of adjacent convection cells along the longitudinal direction
(x axis) due to the temperature difference between its upper (cold) and lower
(hot) walls.

No-slip boundary conditions are imposed in all the walls and the pressure
is prescribed as p(2.0, 0.5, 0.0) = 0.0. The dimensionless cold temperature is
Tc = −0.5 and the hot Th = 0.5. The physical problem is defined setting the
Reynolds Number as Re = 4, 365, Grashof number as Gr = 41, 666.66, the Peclet
number as Pe = 3, 142.8 and Froude number4 as Fr = 0.6432.

Only one refinement/coarsening level was allowed at every 25 time-steps.
For the statistical adaptivity scheme the refinement fraction is rf = 0.6 and
coarsening fraction is rc = 0.01. The linear tolerance for GMRES(30) together
with the BILU(1) and reordering by RCM method is 1.0× 10−6. The nonlinear
tolerance is 1.0× 10−5 and the constant time step size is ∆t = 5.0.

The steady-state velocity vectors are shown in Fig.(3) and the temperature
over the final adapted mesh is plotted in Fig.(4).

4 Besides not introduced in the Navier-Stokes equations presented in section 2.1, the
Froude number is used here to take into account the fluid’s weight in the calculation.
More details about how to incorporate the Froude number in the dimensionless
Navier-Stokes equations may be found in [3].

10 Andre Rossa and Alvaro Coutinho

no overlap between the blocks. The incomplete factorization may be applied
to each of them without extra cost in communication. However, in adaptive
simulations, the new local factorization should be performed every time the
mesh is modified since the adaptivity changes the group of elements residing in
each sub-domain [13]. It is usual to refer to the Block-Jabobi preconditioning
strategy in conjunction with the ILU factorization with a certain level k of fill-in
by BILU(k) [14].

The communication between the processors, such as required for the algebraic
operations or during assembly of arrays of elements are supported by a set of
PETSc library routines which is designed for parallel computing using the MPI
API.

4 Numerical Results

The simulations were performed in a SGI Altix ICE 8400 cluster with 640 cores
(Intel Nehalem). This machine has 1.28 TB of distributed memory. The pro-
cessing nodes are connected by InfiniBand. The cluster is located at the High-
Performance Computing Center (NACAD) of the Federal University of Rio de
Janeiro, Brazil.

4.1 Parallel Adaptive Simulation of the Rayleigh-Bénard Problem

In this example we consider the Rayleigh-Bénard natural convection in a con-
tainer with geometric domain Ω = [0, 4]× [0, 1]× [0, 1]. This problem consists to
solve a natural convection phenomenon of a fluid which initially at rest (t = 0)
produces a sequence of adjacent convection cells along the longitudinal direction
(x axis) due to the temperature difference between its upper (cold) and lower
(hot) walls.

No-slip boundary conditions are imposed in all the walls and the pressure
is prescribed as p(2.0, 0.5, 0.0) = 0.0. The dimensionless cold temperature is
Tc = −0.5 and the hot Th = 0.5. The physical problem is defined setting the
Reynolds Number as Re = 4, 365, Grashof number as Gr = 41, 666.66, the Peclet
number as Pe = 3, 142.8 and Froude number4 as Fr = 0.6432.

Only one refinement/coarsening level was allowed at every 25 time-steps.
For the statistical adaptivity scheme the refinement fraction is rf = 0.6 and
coarsening fraction is rc = 0.01. The linear tolerance for GMRES(30) together
with the BILU(1) and reordering by RCM method is 1.0× 10−6. The nonlinear
tolerance is 1.0× 10−5 and the constant time step size is ∆t = 5.0.

The steady-state velocity vectors are shown in Fig.(3) and the temperature
over the final adapted mesh is plotted in Fig.(4).

4 Besides not introduced in the Navier-Stokes equations presented in section 2.1, the
Froude number is used here to take into account the fluid’s weight in the calculation.
More details about how to incorporate the Froude number in the dimensionless
Navier-Stokes equations may be found in [3].

HPCLatAm 2012, pp. 10-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 10 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Parallel Adaptive Simulation of Incompressible Viscous Flow 11

Fig. 3. Steady-state velocity vectors.

Fig. 4. Temperature at steady-state and final adapted mesh.

The Fig. (5) presents the speedup for the total simulation time, the total time
for solving the Navier-Stokes and transport problems and the AMR/C procedure
considering in the numerator the time spent with 16 CPU’s, i.e.,

Sp =
τ16
τp

. (25)

Parallel Adaptive Simulation of Incompressible Viscous Flow 11

Fig. 3. Steady-state velocity vectors.

Fig. 4. Temperature at steady-state and final adapted mesh.

The Fig. (5) presents the speedup for the total simulation time, the total time
for solving the Navier-Stokes and transport problems and the AMR/C procedure
considering in the numerator the time spent with 16 CPU’s, i.e.,

Sp =
τ16
τp

. (25)

HPCLatAm 2012, pp. 11-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 11 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

12 Andre Rossa and Alvaro Coutinho

Fig. 5. Speedup for the Rayleigh-Bénard problem.

The AMR/C time does not reach 10% of the total simulation time. We may
observe from the results of Fig.(5) that the present simulation achieves a good
parallel performance, that is, speed up around 3 for the total simulation with 64-
cores run with respect to 16-cores run (over 3 for the Navier-Stokes simulation).

Despite the good overall performance, it is observed that the adaptive pro-
cedure does not scale as well as the linear solvers (S64 = 1.22). The poor per-
formance of the AMR/C procedure in the current libMesh release is due to
the fact that all mesh data are replicated on all cores, which increases memory
requirements and communication per core.

4.2 Temperature-driven gravity current with AMR/C

For the simulation of a temperature-driven gravity current with mesh adaptivity,
we consider a slice domain5 Ω = [0, L]× [0, H/8]× [0, H] where the nondimen-
sional length and height are L = 0.8 and H = 0.1. The left half of the channel
is initially filled with the cold fluid and the right half is filled with hot fluid.
The Fig. (6) shows the initial configuration and a detail of the refinement at the
center of the domain.

The dimensionless cold temperature is set to Tc = −0.5 and the hot Th = 0.5.
We consider no-slip boundary conditions on the bottom, left and right walls.

5 To emulate a 2D simulation domain from a mesh composed of 3D elements, the slice
domain is positioned parallel to the xz plane and the perpendicular direction (0, y, 0)
is discretized with only one element except at regions where the mesh adapts. For
all nodes on the mesh vy = 0.0 is imposed.

12 Andre Rossa and Alvaro Coutinho

Fig. 5. Speedup for the Rayleigh-Bénard problem.

The AMR/C time does not reach 10% of the total simulation time. We may
observe from the results of Fig.(5) that the present simulation achieves a good
parallel performance, that is, speed up around 3 for the total simulation with 64-
cores run with respect to 16-cores run (over 3 for the Navier-Stokes simulation).

Despite the good overall performance, it is observed that the adaptive pro-
cedure does not scale as well as the linear solvers (S64 = 1.22). The poor per-
formance of the AMR/C procedure in the current libMesh release is due to
the fact that all mesh data are replicated on all cores, which increases memory
requirements and communication per core.

4.2 Temperature-driven gravity current with AMR/C

For the simulation of a temperature-driven gravity current with mesh adaptivity,
we consider a slice domain5 Ω = [0, L]× [0, H/8]× [0, H] where the nondimen-
sional length and height are L = 0.8 and H = 0.1. The left half of the channel
is initially filled with the cold fluid and the right half is filled with hot fluid.
The Fig. (6) shows the initial configuration and a detail of the refinement at the
center of the domain.

The dimensionless cold temperature is set to Tc = −0.5 and the hot Th = 0.5.
We consider no-slip boundary conditions on the bottom, left and right walls.

5 To emulate a 2D simulation domain from a mesh composed of 3D elements, the slice
domain is positioned parallel to the xz plane and the perpendicular direction (0, y, 0)
is discretized with only one element except at regions where the mesh adapts. For
all nodes on the mesh vy = 0.0 is imposed.

HPCLatAm 2012, pp. 12-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 12 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Parallel Adaptive Simulation of Incompressible Viscous Flow 13

(a)

(b)

Fig. 6. Initial lock-exchange configuration: (a) View of the slice domain and (b) Mesh
detail.

Free-slip boundary conditions are imposed on the top one. Thus free and no slip
fronts may be considered in the same simulation.

We do not consider the reduced gravity for the definitions for the dimension-
less parameters and set the Reynolds number as Re = 1.0×106 and the Grashof
is set to Gr = 1.0× 1010. For this simulation, we disregard the diffusion term of
the transport equation (3). So, the Peclet number does not need to be defined.
We set the exponent of the nonlinear diffusion operator (20) as β = 1 and the
time step is set to ∆t = 0.025.

We compare the results from the present adaptive simulation with those
obtained using fixed structured mesh with characteristic length l = 0.00078125
(given by the hexahedron edge). The dimensionless distance of the front head

Parallel Adaptive Simulation of Incompressible Viscous Flow 13

(a)

(b)

Fig. 6. Initial lock-exchange configuration: (a) View of the slice domain and (b) Mesh
detail.

Free-slip boundary conditions are imposed on the top one. Thus free and no slip
fronts may be considered in the same simulation.

We do not consider the reduced gravity for the definitions for the dimension-
less parameters and set the Reynolds number as Re = 1.0×106 and the Grashof
is set to Gr = 1.0× 1010. For this simulation, we disregard the diffusion term of
the transport equation (3). So, the Peclet number does not need to be defined.
We set the exponent of the nonlinear diffusion operator (20) as β = 1 and the
time step is set to ∆t = 0.025.

We compare the results from the present adaptive simulation with those
obtained using fixed structured mesh with characteristic length l = 0.00078125
(given by the hexahedron edge). The dimensionless distance of the front head

HPCLatAm 2012, pp. 13-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 13 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

14 Andre Rossa and Alvaro Coutinho

between the two fluids X = |x− 0.4| is tracked over time t. The distance from
the initial position (x = 0.4) of both fronts using the fixed mesh is plotted in
Fig. (7)

Fig. 7. Plot of the dimensionless distance of top and bottom fronts.

As expected, free-slip front (top) reaches the vertical wall before the no-slip
(bottom) does. Figure (7) shows a good agreement between our results and those
obtained by the reference [10]. The results from [10] were obtained using a fixed
2D mesh formed by triangles which characteristic length is l = 0.00025.

The Fig (8) shows the temperature distributions and the meshes at two
different times with AMR/C at every 10 time-steps. The refinement fraction is
set as rf = 0.95 and the coarsening fraction is rc = 0.01. In order to prevent the
size of the elements become too small, we allowed only 4 refinement-levels. The
Kelvin-Helmholtz billows are captured by the mesh as the front evolves after the
release.

Through the mesh adaptivity simulation, the largest number of elements
reached is approximately 30,000. If a fixed structured mesh had been used, to
achieve the same refinement level, it would take approximately 131,000 hex-
aedrons. Therefore, with mesh adaptation we can, in this problem, compute a
solution with one order of magnitude less elements without compromising the
solution accuracy.

14 Andre Rossa and Alvaro Coutinho

between the two fluids X = |x− 0.4| is tracked over time t. The distance from
the initial position (x = 0.4) of both fronts using the fixed mesh is plotted in
Fig. (7)

Fig. 7. Plot of the dimensionless distance of top and bottom fronts.

As expected, free-slip front (top) reaches the vertical wall before the no-slip
(bottom) does. Figure (7) shows a good agreement between our results and those
obtained by the reference [10]. The results from [10] were obtained using a fixed
2D mesh formed by triangles which characteristic length is l = 0.00025.

The Fig (8) shows the temperature distributions and the meshes at two
different times with AMR/C at every 10 time-steps. The refinement fraction is
set as rf = 0.95 and the coarsening fraction is rc = 0.01. In order to prevent the
size of the elements become too small, we allowed only 4 refinement-levels. The
Kelvin-Helmholtz billows are captured by the mesh as the front evolves after the
release.

Through the mesh adaptivity simulation, the largest number of elements
reached is approximately 30,000. If a fixed structured mesh had been used, to
achieve the same refinement level, it would take approximately 131,000 hex-
aedrons. Therefore, with mesh adaptation we can, in this problem, compute a
solution with one order of magnitude less elements without compromising the
solution accuracy.

HPCLatAm 2012, pp. 14-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 14 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Parallel Adaptive Simulation of Incompressible Viscous Flow 15

(a)

(b)

(c)

(d)

Fig. 8. Adaptive meshes and temperature distribution: (a) Adaptive mesh at t = 12.5,
(b) Temperature distribution at t = 12.5, (c) Adaptive mesh at t = 25.0 and (d)
Temperature distribution at t = 25.0.

5 Conclusions

The libMesh framework was used to implement the stabilized SUPG/PSPG
finite element formulation for the parallel adaptive solution of incompressible
viscous flow and advective-diffusive transport using a three-linear hexahedral ele-
ment. Good numerical results were obtained for parallel executions with adaptive
meshes. AMR/C allows the representation of multiple flow scales and improves
resolution where needed. It was possible to track the Kelvin-Helmholtz billows
present in the temperature-driven gravity current problem.

References

1. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White, A.:
Sourcebook of Parallel Computing. Morgan Kaufmann Publishers (2003)

2. Kirk, B.S., Peterson J.W., Stone R., Carey G.F.: Libmesh: a c++ library for parallel
adaptive mesh refinement/coarsing simulations. Journal Engineering with Comput-
ers, 22, 237-254 (2006)

3. Griebel, M., Dornseifer, T., Neuhoeffer, T.: Numerical Simulation in Fluid Dynam-
ics: A Practical Introduction. SIAM (1997)

Parallel Adaptive Simulation of Incompressible Viscous Flow 15

(a)

(b)

(c)

(d)

Fig. 8. Adaptive meshes and temperature distribution: (a) Adaptive mesh at t = 12.5,
(b) Temperature distribution at t = 12.5, (c) Adaptive mesh at t = 25.0 and (d)
Temperature distribution at t = 25.0.

5 Conclusions

The libMesh framework was used to implement the stabilized SUPG/PSPG
finite element formulation for the parallel adaptive solution of incompressible
viscous flow and advective-diffusive transport using a three-linear hexahedral ele-
ment. Good numerical results were obtained for parallel executions with adaptive
meshes. AMR/C allows the representation of multiple flow scales and improves
resolution where needed. It was possible to track the Kelvin-Helmholtz billows
present in the temperature-driven gravity current problem.

References

1. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White, A.:
Sourcebook of Parallel Computing. Morgan Kaufmann Publishers (2003)

2. Kirk, B.S., Peterson J.W., Stone R., Carey G.F.: Libmesh: a c++ library for parallel
adaptive mesh refinement/coarsing simulations. Journal Engineering with Comput-
ers, 22, 237-254 (2006)

3. Griebel, M., Dornseifer, T., Neuhoeffer, T.: Numerical Simulation in Fluid Dynam-
ics: A Practical Introduction. SIAM (1997)

HPCLatAm 2012, pp. 15-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 15 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

16 Andre Rossa and Alvaro Coutinho

4. Tezduyar, T.: Stabilized finite element formulations for incompressible flows com-
putation. Advances in Applied Mechanics, 28, 1-44 (1992)

5. Härtel, C., Meiburg, E., Necker, F.: Analysis and direct numerical simulation of the
flow at a gravity-current head. Part 1. Flow topology and front speed for slip and
no-slip boundaries. Journal of Fluid Mechanics, 418, 189-212 (2000)

6. Bazilevs, Y., Calo, V.M., Tezduyar, T., Hughes, T.J.R.: YZβ Discontinuity Captur-
ing for Advection-Dominated Processes with Application to Arterial Drug Delivery.
International Journal for Numerical Methods in Fluids, 54, 593-608 (2007)

7. Bank, R., Welfert B.: A posteriori error estimates for the stokes problem. Journal
of Numerical Analysis, 28, 591-623 (1991)

8. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis.
Wiley Interscience (2000)

9. Carey, G.: Computational grids: generation, adaptation, and solution strategies.
Taylor & Francis (1997)

10. Hiester, H., Piggot, M., Allison, P.: The impact of mesh adaptivity on the gravity
current front speed in a two-dimensional lock-exchange. Ocean Modeling, 38, 1-21
(2011)

11. Kelly, D., Gago, J., Zienkiewicz, O., Babuska, I.: A posteriori error analysis and
adaptive processes in the finite element method: Part I - Error analysis. International
Journal for Numerical Methods in Engineering, 19, 1593-1619 (1983)

12. Liu, W., Sherman, A.: Comparative Analysis of the Cuthill-McKee and the Re-
verse Cuthill-McKee Ordering Algorithms for Sparse Matrices. Journal on Numeri-
cal Analysis, 13, 198-213 (1976)

13. Camata, J.J., Rossa, A.L., Valli, A.M.P., Catabriga, L., Carey, G.F., Coutinho,
A.L.G.A.: Reordering and incomplete preconditioning in serial and parallel adaptive
mesh refinement and coarsening flow solutions. International Journal for Numerical
Methods in Fluids, 69, 802-823 (2012)

14. Benzi, M.: Preconditioning Techniques for Large Linear Systems: A Survey. Journal
of Computational Physics, 182, 418-477 (2002)

16 Andre Rossa and Alvaro Coutinho

4. Tezduyar, T.: Stabilized finite element formulations for incompressible flows com-
putation. Advances in Applied Mechanics, 28, 1-44 (1992)

5. Härtel, C., Meiburg, E., Necker, F.: Analysis and direct numerical simulation of the
flow at a gravity-current head. Part 1. Flow topology and front speed for slip and
no-slip boundaries. Journal of Fluid Mechanics, 418, 189-212 (2000)

6. Bazilevs, Y., Calo, V.M., Tezduyar, T., Hughes, T.J.R.: YZβ Discontinuity Captur-
ing for Advection-Dominated Processes with Application to Arterial Drug Delivery.
International Journal for Numerical Methods in Fluids, 54, 593-608 (2007)

7. Bank, R., Welfert B.: A posteriori error estimates for the stokes problem. Journal
of Numerical Analysis, 28, 591-623 (1991)

8. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis.
Wiley Interscience (2000)

9. Carey, G.: Computational grids: generation, adaptation, and solution strategies.
Taylor & Francis (1997)

10. Hiester, H., Piggot, M., Allison, P.: The impact of mesh adaptivity on the gravity
current front speed in a two-dimensional lock-exchange. Ocean Modeling, 38, 1-21
(2011)

11. Kelly, D., Gago, J., Zienkiewicz, O., Babuska, I.: A posteriori error analysis and
adaptive processes in the finite element method: Part I - Error analysis. International
Journal for Numerical Methods in Engineering, 19, 1593-1619 (1983)

12. Liu, W., Sherman, A.: Comparative Analysis of the Cuthill-McKee and the Re-
verse Cuthill-McKee Ordering Algorithms for Sparse Matrices. Journal on Numeri-
cal Analysis, 13, 198-213 (1976)

13. Camata, J.J., Rossa, A.L., Valli, A.M.P., Catabriga, L., Carey, G.F., Coutinho,
A.L.G.A.: Reordering and incomplete preconditioning in serial and parallel adaptive
mesh refinement and coarsening flow solutions. International Journal for Numerical
Methods in Fluids, 69, 802-823 (2012)

14. Benzi, M.: Preconditioning Techniques for Large Linear Systems: A Survey. Journal
of Computational Physics, 182, 418-477 (2002)

HPCLatAm 2012, pp. 16-16 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 16 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

A Numerical Algorithm for the Solution of Viscous
Incompressible Flow on GPU’s

Santiago Costarelli1, Mario Storti1, Rodrigo Paz1, Lisandro Dalcín1, and Sergio
Idelsohn1,2,3

1 CIMEC-INTEC-CONICET-UNL, Guemes 3450, 3000 Santa Fe, Argentina
santi.costarelli@gmail.com, http://www.cimec.org.ar
2 International Center for Numerical Methods in Engineering (CIMNE),

Technical University of Catalonia (UPC), Gran Capitán s/n, 08034 Barcelona, Spain,
3 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

Abstract. Graphic Processing Units have received much attention in last years.
Compute-intensive algorithms operating on multidimensional arrays that have
nearest neighbor dependency and/or exploit data locality can achieve massive
speedups. This work discuss a solver for the pressure problem in applications us-
ing immersed boundary techniques in order to account for moving solid bodies.
The solver is based on standard Conjugate Gradients iterations and depends on
the availability of a fast Poisson solver on the whole domain to define a precon-
ditioner.

Keywords: Graphics Processing Units; Incompressible Navier-Stokes; Poisson
equation

1 Introduction

Graphics Processing Units (GPU) are computer co-processors used in desktop comput-
ers and workstations to off-load the renderization of complex graphics from the main
processor (CPU). They have evolved to complex systems containing many process-
ing units, a large amount of on-board memory and a computing power in the order of
teraflops. They are instances of massively parallel architectures and Single Instruction
Multiple Data (SIMD) paradigms.

Recently, GPU’s are becoming increasingly popular among scientists and engineers
for High Performance Computing (HPC) applications [1–3, 8, 9, 11–15, 19, 20]. This
tendency motivated GPU manufacturers to develop General Purpose Graphics Process-
ing Units (GPGPU) targeting the HPC market.

In the pursuit of more realistic visualization algorithms for video games and spe-
cial effects, solving Partial Differential Equations (PDE) has become a necessary in-
gredient [6, 7, 10, 18, 22]. Numerical schemes employed in these applications usually
sacrifice accuracy for speed, resulting in very fast implementations when comparing to
engineering codes.

The resolution of Computational Fluid Dynamics (CFD) problems on GPU’s re-
quires of specialized algorithms due to the particular hardware architecture of these de-
vices. Algorithms that fall in the category of Cellular Automata (CA) are the best fitted

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 17 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

http://www.cimec.org.ar

for GPU’s. For instance, explicit Finite Volume or Finite Element methods, jointly with
immersed boundary techniques [21] to represent solid bodies, can be used on structured
cartesian meshes. In the case of incompressible flows, it is not possible to develop a
purely explicit algorithm, due to the essentially non-local nature of the incompressibil-
ity condition.

Segregated algorithms solve an implicit Poisson equation for the pressure field, be-
ing this stage the most time-consuming in the solution procedure. Using fast Poisson
solvers like Multigrid (MG) or Fast Fourier Transform (FFT) is tempting but treating
moving solid bodies becomes cumbersome in the case of MG or unsuitable for FFT.
To surpass these difficulties, Molemaker et.al proposed in [13] the Iterated Orthogonal
Projection (IOP) method which requires a series of projections on the complete grid
(fluid and solid) to enforce the incompressibility and boundary conditions.

In this work an alternative to IOP, the Accelerated Global Preconditioning (AGP),
is proposed. The solver is based on using a Preconditioned Conjugate Gradients (PCG)
algorithm, so that, it is an accelerated iterative method in contrast to the stationary
scheme used in IOP. In addition, AGP method iterates only on pressure, whereas IOP
iterates on both pressure and velocity.

2 The Accelerated Global Preconditioning

A preconditioning for embedded problems that is based on solving the problem in the
complete mesh is presented. Suppose a situation like in figure 1, with a solid body
described by the boundary Γbdy. This is embedded in a structured FEM grid of constant
mesh size h. The Poisson problem outside the body has to be solved, so that this is done
by assembling the matrices of those finite elements that are in the fluid region. In order
to do that, the center of the elements are checked wether they fall inside or outside the
body. In this way the body is approximated by a staircase geometry as is shown in gray
in the figure. In a FEM context the imposition of the homogeneous Neumann condition
is done by simply assembling only those elements that are in the fluid part (filled in
gray in the figure). The other elements that are not in gray are ghost elements and are
not assembled for the solution of the Poisson problem. Only the pressure in the nodes
connected to some element that is assembled are relevant, i.e. those that are marked in
blue and red. Those that are marked in green are ghost and then they are not computed.
Those that are computed are classified as interior and boundary. interior to the fluid,
(subindex F) are those that are surrounded by computed elements, or conversely that
are not connected to ghost elements. The rest are marked as boundary (subindex B,
filled in red in the figure). So the Poisson problem is

Ax = b, (1)

and the splitting of nodes induces a matricial splitting like this[
AFF AFB

ABF ABB

] [
xF
xB

]
=
[
bF
bB

]
(2)

For the definition of the preconditioning P , the whole matrix P̃ for all elements
(fluid and ghost) is assembled, and the right hand side vector is extended as 0 on the

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 18 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

assembled elements

fluid node
boundary node

ghost node

solid body

fluid a

b

Fig. 1. Description of nodes and elements used in the AGP preconditioning.

ghost elements. The system is solved and then the ghost values are discardeed, i.e. the
preconditioning is defined formally as yFB = PxFB , where yFB is the solution of P̃FF P̃FB P̃FG

P̃BF P̃BB P̃BG

P̃GF P̃GB P̃GG

[xFB
xG

]
=
[
yFB
0G

]
. (3)

Note that a differente symbol P̃ is used for the discrete Laplace operator in this
equation, since it is assembled on differente elements. However it can be seen that

– P̃FF = AFF since the F nodes are those for which all elements are assembled in
the Poisson problem.

– P̃FB = AFB , and P̃BF = ABF since for instance, such a coefficient would link
nodes as a and b in the figure. This coefficient comes from the assembly of all the
elements that are connected to a and b, but since a is an F node, it means that all
elements connected to a are assembled.

– P̃FG = P̃GF = 0 since F nodes are only connected to fluid elements and G are
only connected to ghost elements, so that they can not share an element.

So AFF AFB 0
ABF P̃BB P̃BG

0 P̃GB P̃GG

[xFB
xG

]
=
[
yFB
0G

]
. (4)

xG can be eliminated from the bottom line, and then[
AFF AFB

ABF P̃BB − P̃BGP̃−1
GGP̃GB

]
xFB = yFB , (5)

so that an explicit expression for the preconditioning matrix is obtained

P =
[
AFF AFB

ABF P̃BB − P̃BGP̃−1
GGP̃GB

]
. (6)

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 19 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

A first consequence of this expression is that a lot of eigenvalues of the precondi-
tioned matrix will be 1. Consider the space of all vectors x such that the B component
is null, then

Ax = Px,

P−1Ax = x,
(7)

so that x is an eigenvector with eigenvalue 1.

2.1 Numerical experiment computing condition numbers

The condition number of matrices for the Poisson problem have been computed with
and without preconditioning.

– Nx ranges from 8 to 64.
– The Poisson problem is computed selecting the quadrangles whose center fall out-

side the body.
– In all cases the domain is the unit square with periodic boundary conditions.
– The bodies considerer are: cylinder of radius 0.2, a vertical strip of width 0.5, and

a square of side 0.5.
– Ths condition numbers are computed with Octave.

Note that in all cases the non preconditioned matrix condition number grows as
O(N2

x), whereas with the preconditioning it remains constant.

0

0.5

1

1.5

2

2.5

3

0.8 1 1.2 1.4 1.6 1.8 2

square

w/preco

cylinder

strip

fluid

solid

fluid

solid

fl
u
id

so
lid

w/o preco

w/preco
w/o preco

w/preco
w/o preco

Fig. 2. Condition number of Poisson problem with and without FFT preconditioning

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 20 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

0 10 20 30 40 50 60 70

w=h (no preco)

w=0.05 (no preco)

w=h, with FFT preco

w=0.05, with FFT preco

Nx

10 4

10 3

10 2

10 1

10 0

L

w

Fig. 3. Condition number for Poisson problem on a square, with and without FFT precondition-
ing.

2.2 The thin wall case

Consider now the case where the fluid occupies the interior of a square max(|x −
L/2|, |y−L/2|) < L/2−w wherew is the width of the wall (see figure 3). In the figure
the condition number for the Poisson problem with and without preconditioning are
shown. The case where the width of the wall varies so as to have always one element (in
fact two elements due to the periodic b.c.’s) separating the squares is considered. On the
other hand if a fixed value w = 0.05 then the condition number of the preconditioned
case is kept bounded.

2.3 Computation of the condition number in terms of the eigenvalues of the
Steklov operators

The eigenvalues of the Steklov operators can be computed in closed form for the case
of a cylinder in an infinite flow. Recall that the convergence of the AGP scheme is
controlled by the condition number of the preconditioned operator

cond(P−1A) =
max| eig(P−1A)|
min| eig(P−1A)|

(8)

As all are positive and definite operators, the eigenvalues λ are real and positive, and
0 ≤ λ ≤ 1. Also there are a lot of eigenvalues that are unity λ = 1, they correspond to
the space of functions that satisfy the boundary condition (∂φ/∂n) = 0 at Γ . However,
the Krylov methods iterate only on the space perpendicular to it, and it can be shown
that the condition number of the preconditioned Steklov operator must be computed

S̃ = (SF + SS)−1SF . (9)

κ(S̃) =
max[eig(S̃)]
min[eig(S̃)]

(10)

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 21 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

For simple geometries like a semi-infinite plane, a strip, and a cylinder the eigenvalues
of SF , SS can be explicitely computed. In addition, it turns out that the eigenfunctions
are the same, so that the spectral decomposition of the sum SF + SS and the precon-
ditioned operator are available. Recall that the Steklov SF : VΓ → VΓ , operator is
defined as w = SF (v)

∆φ = 0, in ΩF
φΓ = v, and w = (∂φ/∂n)|Γ

(11)

where VΓ = {real valued functions on Γ}, n̂ is the normal to Γ exterior to ΩF . The
same definition, mutatis mutandis, applies to SS .

The semiplane. The geometry consists on a semiplane

ΩF = {x/x < 0}, ΩS = {x/x > 0}, Γ = {x/x = 0} (12)

By symmetry of translation in the y direction the eigenfunctions must be plane waves
of the form v = eiky with k real. The solution to the Poisson problem on the fluid and
solid are

φ = eikye−|k|x, x ∈ ΩS ,
φ = eikye|k|x, x ∈ ΩF ,

(13)

and then

eig{SF (v)} = eig{SS(v)} = |k|, (14)

so that all the eigenvalues of S̃ are 0.5, and κ(S̃) = 1.

The cylinder. The domain is ΩS = {||x|| = R}. By rotational symmetry the eigen-
functions must be

vn,+ = cos(nθ)
vn,− = sin(nθ)

(15)

where r, θ are polar coordinates at the center of the cylinder. The solution at both do-
mains are

φn,±,F = r−n
{

cos(nθ)
sin(nθ)

}
, φn,±,S = rn

{
cos(nθ)
sin(nθ)

}
, (16)

so that the eigenvalues and eigenfunctions of both operators are the same

λ(n,±, F/S) =
n

R
(17)

and again λn,S̃ = 1/2, κ(S̃) = 1.

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 22 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

The infinite strip The domain is ΩS = {|x| ≤ w/2} where w is the width of the strip.
The space VΓ are pairs of functions on both sides of the strips. By translation invariance
in the y direction

v =

{
a eiky, for x = −w/2
b eiky, for x = +w/2

(18)

it can be shown by symmetry x→ −x that the eigenfunctions are the symmetric (a = b)
and antisymmetric (a = −b) combinations, so that

vk,± =

{
±eiky, for x = −w/2,
eiky, for x = +w/2.

(19)

The corresponding solution for the symmetric modes at ΩF,S are

φk,+ =

eiky+|k|(w/2−x), for |x| ≥ w/2,
cosh(kx)

cosh(kw/2)
eiky, for |x| ≤ w/2,

(20)

and the corresponding eigenvalues

λ(k,+, F) = |k|,
λ(k,+, S) = k tanh(kw/2).

(21)

And for the antisymmetric eigenfunctions,

φk,− =

sign(x)eiky+|k|(w/2−x), for |x| ≥ w/2,
sinh(kx)

sinh(kw/2)
eiky, for |x| ≤ w/2,

(22)

and the corresponding eigenvalues

λ(k,−, F) = |k|,
λ(k,−, S) = k coth(kw/2).

(23)

Both the symmetric and antisymmetric eigenvalues van be seen in figure 4. Note
that the eigenvalues of the fluid operator λ(k,±) are the same for the symmetric and
antisymmetric case and independent of the strip width w, since the fluid domain is
completely decoupled by the strip, and then the eigenvalues of the Steklov operator SF
are the same as those of those of each semiplane x > w/2 and x < w/2.

On the other hand, with respect to the eigenvalues of the Steklov operator of the strip
(solid domain) SS , note that both symmetric and antisymmetric eigenvalues behave like
∼ |k| for kw → ∞. This is because for kw large means that the wavelength of the
eigenfunction is much smaller than the width of the strip and then again, the behavior
of the eigenvalues is the same as for a infinite semiplane.

However, when kw is small the behavior of the symmetric and antisymmetric bran-
ches is very different. Remember that, as per definition of the Steklov operator, given an
eigenfunction u it must be imposed as a Dirichlet boundary condition on the interface

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 23 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

Fig. 4. Eigenvalues of Steklov operators for the solid strip case.

Γ , solve the Laplace equation for the field φ in the corresponding domain and compute
the flux v = (∂φ/∂n). As u is an eigenfunction, v should be proportional to u and the
proportionality constant is the eigenvalue λ. First consider the symmetric branch. If a
sinusoidal value is imposed on the left boundary x = −w/2 (see figure 6) then for the
symmetric mode the same Dirichlet boundary condition must be imposed on the other
boundary x = +w/2. As a result, facing points inside the strip like A,A′ or B,B′

have equal values of temperature φ imposed and then the heat flow is very low, which
means a small eigenvalue. On the other hand, for the antisymmetric mode, opposing
points have the same absolute temperature but of opposed sign, and the heat flow is
very high (the red arrows in the figure). This explains why for low wavenumber k the
eigenvalues of the symmetric mode are smaller, with a behavior λ ∝ k2 for k → 0. For
the antisymmetric mode for low wavenumber the eigenvalue is larger with a behavior
λw → 2 for kw → 0.

This last limit is simple to understand. Effectively, for very small wavenumber con-
duction in the y direction can be neglected, and so for an eigenfunction u = ± cos ky
at x = ±w/2 the solution is

φ =
2x
w

cos ky, (24)

so that

v = (∂φ/∂n)|x=w/2 =
2
w

cos ky =
2
w
u. (25)

So that, λw = 2.

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 24 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Fig. 5. Eigenvalues of preconditioned Steklov operator for the symmetric and antisymmetric
branches.

The eigenvalues of the preconditioned Steklov operators are plot in figure 5. They
are given by the expressions

λ(k,+, S̃) =
|k|

|k|+ k tanh(kw/2)
,

λ(k,−, S̃) =
|k|

|k|+ k coth(kw/2)
.

(26)

Note that for both symmetric and antisymmetric mode the eigenvalues g to 1/2 for kw →
∞, as for an infinite semiplane. On the other hand, for small kw the eigenvalues of the
symmetric mode are larger than 1/2, and those for the antisymmetric modes are smaller.
So, if the eigenvalues for the symmetric modes are considered the condition of the
preconditioned Steklov operator is 2, whereas if we consider the antisymmetric modes
the condition number tends to∞ since the smallest eigenvalue tends to 0 for kw → 0.

This is expected, since the FFT preconditioning is based on solving the Poisson
equation on the whole domain, fluid and solid, instead in solving only on the fluid.
Thus, this preconditioning is good whenever the fluxes in the solid domain are small.
But this is exactly the case for the symmetric modes, and the opposite happens for the
antisymmetric modes.

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 25 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

x

y

A

A'

B

B'

x

y

A'

B

B'

symmetric mode antisymmetric mode

A

Fig. 6. Explanation of the behavior of the Steklov eigenvalues for large wavelengths.

Estimation of the condition number for thin walls The analysis of the infinite strip
shows that a situation where the FFT preconditioning is deteriorated is when there are
thin walls in the solid geometry, since in that case the modes that are antisymmetric
about the axis of the solid produce large heat fluxes in the solid, and this is an indication
of bad performance of the preconditioning. So for elongated solid geometries with, say,
a typical length of L and a typical width of w � L an estimate of the condition number
of the preconditioned operator can be obtained by taking L as the maximal wavelength
and the estimate gives a condition number of

κ(S̃) ∼ |kmin|+ kmin coth(kminw/2)
|kmin|

(27)

where kmin = 2π/L. By algebraic manipulation this can be simplified to

κ(S̃) ∼ 1 + coth(
πw

L
) ∼ L

πw
, (28)

i.e. the condition number is proportional to the aspect ratio of the solid domain.

3 CUDA implementation

A basic description of the CUDA implementation will be given here. Complete details
can be found elsewhere [4, 5].

Code (1) shows the pseudocode for the complete set of steps required under a
fractional-step method to solve checkerboard problems on pressure-velocity decoupling
under discrete schemas as finite differences or volume methods.

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 26 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Algorithm 1 - Pseudocode used to explain briefly the steps requiered by our prob-
lem.

f o r i =1 : TimeSteps {
1− Update s o l i d p o s i t i o n .
2− Impose s o l i d v e l o c i t i e s on c u r r e n t v e l o c i t y f i e l d .
3− So lve momentum e q u a t i o n s .
4− Time i n t e g r a t i o n (Adams−B a s h f o r t)
5− Impose s o l i d v e l o c i t i e s on c u r r e n t v e l o c i t y f i e l d .
6− Compute v e l o c i t y d i v e r g e n c e .
7− CG+FFT s o l v e r .

7.1− F l u i d + s o l i d FFT s o l v e r .
7.2− S o l v i n g P o i s s o n e q u a t i o n f o r p r e s s u r e (←↩

c o n t r i b u t i o n s a c c o u n t e d on ly by s o l i d−f r e e nodes) .
8− Compute p r e s s u r e g r a d i e n t s (c o n t r i b u t i o n s a c c o u n t e d ←↩

on ly by s o l i d−f r e e nodes) .
9− Update s o l i d−f r e e nodes u s i n g p r e s s u r e g r a d i e n t s .

}

Some comments about the algorithm follows:

– Step 1 applies only in the case of moving bodies. If the bodies are at rest this step
is irrelevant.

– Step 2 consists in imposing the velocities of the solid to those velocity cells that fall
inside the given body.

– In step 7.2 only the contributions of cells not connected to the solid are assembled.
– In steps 8-9 pressure gradients are obtained and used to update velocity nodes

whose pressure neighbours are not in the solid.

The results obtained by the algorithm are shown on Table (1). The GPGPU used
was a NVIDIA Tesla C2050 under a CPU intel i7 950. CG iterations were limited on 3,
where an absolute error tolerance of 10−2 ∼ 10−3 was reached.

Simple [segs/MCels] Double [segs/MCels]

32x32x32 0.17 0.20
64x64x64 0.043 0.062

128x128x128 0.026 0.044
Table 1. Performance obtained per time step using NVIDIA Tesla C2050. CG iterations: 3.

The most consuming steps are those on solving momentum equations and the Pois-
son step.

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 27 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

In this work the NVIDIA cuFFT library [16, 17] has been used to perform FFT’s,
Thrust and CUSP API’s to manage vector and linear algebra operations, and VTK for
visualization the results obtained.

4 Numerical experiments

solid layer

Fig. 7. Colormap of log10(|ω|) for a square of side Ls = 0.4[m] moving in a square domain of
side L = 1[m]. The square moves forming a Lissajous 8-shaped curve.

Numerical simulations of several flows involving moving bodies are shown in fig-
ures 7-11. In all cases (except for the case of the example in section §4) the flows
represent a body moving inside a square or cubic cavity of length side 1[m]. In order
to circumvent the restriction of periodic boundaries intrinsic to the FFT solver, a thin
layer (2.5% of the square or cubic domain side length) is defined as a fixed body. In
all cases the color corresponds to log10(|ω|), i.e. the absolute magnitude of the vortic-
ity vector ω = ∇ × u in logarithmic scale. This quantity helps in the visualization
of boundary layers, since the magnitude of vorticity has variations of several orders of
magnitude in flows with boundary layers at high Reynolds numbers. In 2D cases the
mesh was 128 × 128 and in 3D cases 128 × 128 × 128. In all cases the side of the
domain (square in 2D, cube in 3D) was L = 1[m] and the kinematic viscosity was
ν = 6.33×10−5[m2/s].

Square moving in curved trajectory. The body is a square of side Ls = 0.4[m], and
the center of the body (xc, yc) describes an 8-shaped Lissajous curve, described by

xc =
L

2
+A cos(2ωt), yc =

L

2
+A cos(

π

2
+ ωt),

ω = 1[s−1], A = 0.2[m]
(29)

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 28 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

solid layer

Fig. 8. Colormap of log10(|ω|) for a rectangle sliding on the bottom of the domain.

b
lo

w
in

g
 layer

periodic

periodic

Fig. 9. Colormap of log10(|ω|) for a square body performing harmonic motion in the vertical
direction with a cross flow in the horizontal direction.

As the body displaces fluid high levels of vorticity can be observed at the vertices. As the
simulation progresses large vortices remain rotating in the fluid with long filamentary
vorticity layers that are a characteristic 2D feature (they are unstable in 3D).

Moving rectangular obstacle. The body is a rectangle of height H = 0.5[m] and
width W = 0.2[m]. An harmonic horizontal displacement as follows

xc = (L/2) +A cos(ωt),

ω = 1[s−1], A = 0.3[m],
(30)

is imposed. As the body displaces fluid a large concentration of vorticity is observed in
the upper corner of the body, with characteristic trailing filamentary vortex layers that
detach from the corners.

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 29 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

solid layer

Fig. 10. Colormap of log10(|ω|) for a cube moving in a Lissajous 8-shaped curve.

solid layer

Fig. 11. Colormap of log10(|ω|) for a falling block.

Square moving vertically with mean horizontal flow. In this example the exterior
boundary of the computational domain is not at rest, but rather it is intended to generate
a mean flow that impinges on the body. This freestream flow is obtained with a layer
of width 0.025[m] at the left and right sides were a positive x velocity of u = 1[m/s]
is imposed. Periodic boundary conditions are imposed in the vertical y direction. The
body is a square of side Ls = 0.4[m], the center of the body (xc, yc) is centered in the
x direction and experiences an harmonic vertical movement

yc = (L/2) +A cos(ωt),

ω = 0.5[s−1], A = 0.2[m].
(31)

An accelerating boundary layer is formed at the left side facing the fluid stream. The
boundary layer accelerate towards the corners and detach there. If the vertical move-
ment were at a constant velocity then the flow would be equivalent to a fixed body with
an impinging stream at an angle of attack. A notable feature of the flow is that when

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 30 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

the body reaches the extreme positions in the y direction the vortex layers become un-
stable and start shedding vortices, whereas when the body is moving the vortex layer
stabilizes.

Moving cube This is a 3D case. The center (xc, yc, zc) of a cube of side Ls = 0.4[m]
is describing a Lissajous 8-shaped figure in the z = 0.66[m] plane, as follows

xc = L/2 +A cos(ωt),

yc = L/2 +A cos(
π

2
+ 2ωt),

zc = 0.66[m],

ω = 2[s−1], A = 0.4[m]

(32)

This is similar to the case §4 but 3D. The large filamentary vortex layers are no more
present, but instead there is a large amount of small eddies characteristic of a 3D flow.

Falling block The body is a parallelepiped block of dimensions Lx = Lz = 0.6[m],
Ly = 0.2[m]. The center of the body is initially at (xc, yc, zc) = (0.4125, 0.7, 0.5)[m]
and starts falling vertically with a velocity of 1[m/s]. As the body falls it displaces a
large quantity of fluid that forms a turbulent region expanding from both sides of the
block.

5 Conclusions

A new method called Accelerated Global Preconditioning for solving the incompress-
ible Navier-Stokes equations with moving bodies was presented. The algorithm is based
on a pressure segregated, staggered grid, Finite Volume formulation and uses an FFT
solver for preconditioning the CG solution of the Poisson problem. Theoretical esti-
mates of the condition number of the preconditioned Poisson problem are given, and
several numerical examples are presented validating these estimates. The algorithm is
specially suited for implementation on GPU hardware. The condition number of the pre-
conditioned Poisson equation does not degrade with refinement. The algorithm allows
computing 3D problems in real time on moderately large meshes for many problems of
practical interest in the area of Computational Fluid Dynamics.

6 Acknowledgment

This work has received financial support from

– Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina,
PIP 5271/05),

– Universidad Nacional del Litoral (UNL, Argentina, grant CAI+D 2009-65/334),
– Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina,

grants PICT-1506/2006, PICT-1141/2007, PICT-0270/2008), and

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 31 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

http://www.conicet.gov.ar
http://www.unl.edu.ar
http://www.agencia.gov.ar

– European Research Council (ERC) Advanced Grant, Real Time Computational
Mechanics Techniques for Multi-Fluid Problems (REALTIME, Reference: ERC-
2009-AdG).

The authors made extensive use of Free Software as GNU/Linux OS, GCC/G++ com-
pilers, Octave, and Open Source software as VTK among many others. In addition,
many ideas from these packages have been inspiring to them.

Bibliography

[1] Adams, S., Payne, J., Boppana, R.: Finite difference time domain (FDTD) simu-
lations using graphics processors. HPCMP Users Group Conference 0, 334–338
(2007)

[2] Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: SC ’09: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. pp. 1–11.
ACM, New York, NY, USA (2009)

[3] Corrigan, A., Camelli, F.F., Löhner, R., Wallin, J.: Running unstructured grid-
based CFD solvers on modern graphics hardware. International Journal for Nu-
merical Methods in Fluids (2010), (in press)

[4] Costarelli, S.: Resolución de las ecuaciones de navier-stokes utilizando cuda.
Tech. rep., Universidad Nacional del Litoral (2011), http://www.cimec.
org.ar/ojs/index.php/cimec-repo/article/view/3735

[5] Costarelli, S., Paz, R., Dalcin, L., Storti, M.: Resolución de las ecuaciones de
navier-stokes utilizando cuda. In: Muller, O., Signorelli, J., Storti, M. (eds.)
Mecánica Computacional. vol. XXX, pp. 2979–3008. AMCA (2011), http:
//www.cimec.org.ar/ojs/index.php/mc/article/view/3965

[6] Crane, K., Llamas, I., Tariq, S.: Chapter 30 - Real-Time Simulation and Rendering
of 3D Fluids (2008)

[7] Elcott, S., Tong, Y., Kanso, E., Schröder, P., Desbrun, M.: Stable, circulation-
preserving, simplicial fluids. In: SIGGRAPH Asia ’08: ACM SIGGRAPH ASIA
2008 courses. pp. 1–11. ACM, New York, NY, USA (2008)

[8] Elsen, E., LeGresley, P., Darve, E.: Large calculation of the flow over a hypersonic
vehicle using a GPU. J. Comput. Phys. 227(24), 10148–10161 (2008)

[9] Goddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Wobker, H., Becker,
C., Turek, S.: Using GPU’s to improve multigrid solver performance on a cluster.
Int. J. Comput. Sci. Eng. 4(1), 36–55 (2008)

[10] Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient simulation of large
bodies of water by coupling two and three dimensional techniques. ACM Trans.
Graph. 25(3), 805–811 (2006)

[11] Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.: Nodal discontinuous
galerkin methods on graphics processors. Journal of Computational Physics
228(21), 7863–7882 (2009)

[12] Lastra, M., Mantas, J.M., Ure na, C., Castro, M.J., García-Rodríguez, J.A.: Sim-
ulation of shallow-water systems using graphics processing units. Math. Comput.
Simul. 80(3), 598–618 (2009)

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 32 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

http://erc.europa.eu
http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=518
http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=518
http://www.cimec.org.ar/ojs/index.php/cimec-repo/article/view/3735
http://www.cimec.org.ar/ojs/index.php/cimec-repo/article/view/3735
http://www.cimec.org.ar/ojs/index.php/mc/article/view/3965
http://www.cimec.org.ar/ojs/index.php/mc/article/view/3965

[13] Molemaker, J., Cohen, J.M., Patel, S., Noh, J.: Low viscosity flow simulations for
animation. In: SCA ’08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. pp. 9–18. Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland (2008)

[14] Mossaiby, F., Rossi, R., Dadvand, P., Idelsohn, S.: Opencl-based implementation
of an unstructured edge-based finite element convection-diffusion solver on graph-
ics hardware. International Journal for Numerical Methods in Engineering 89,
1635 1651 (2012)

[15] Mullen, P., Crane, K., Pavlov, D., Tong, Y., Desbrun, M.: Energy-preserving inte-
grators for fluid animation. In: SIGGRAPH ’09: ACM SIGGRAPH 2009 papers.
pp. 1–8. ACM, New York, NY, USA (2009)

[16] Nvidia, C.: Compute unified device architecture (CUDA) (2010), http://
developer.nvidia.com/category/zone/cuda-zone

[17] Nvidia, C.: CUFFT library (2010), http://developer.nvidia.com/
cufft

[18] P.Rinaldi, Bauza, C.G., Vénere, M., Clausse, A.: Paralelización de autómatas celu-
lares de aguas superficiales sobre placas gráficas. In: Cardona, A., Storti, M.,
Zuppa, C. (eds.) Mecánica Computacional Vol. XXVII. vol. XXVII, pp. 2943–
2957 (2008)

[19] Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu,
W.m.W.: Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA. In: PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming. pp.
73–82. ACM, New York, NY, USA (2008)

[20] Thibault, J.C., Senocak, I.: CUDA implementation of a Navier-Stokes solver on
multi-GPU desktop platforms for incompressible flows. In: AIAA (ed.) 47th
AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition (Disc 1) (2009)

[21] Wang, X., Wang, C., Zhang, L.: Semi-implicit formulation of the immersed finite
element method. Computational Mechanics 49, 421–430 (2012)

[22] Wu, E., Liu, Y., Liu, X.: An improved study of real-time fluid simulation on GPU:
Research articles. Comput. Animat. Virtual Worlds 15(3-4), 139–146 (2004)

HPCLatAm 2012, pp. 17-33 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 33 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cufft
http://developer.nvidia.com/cufft

Parallel Computing Applied to Satellite Images

Processing for Solar Resource Estimates

Rodrigo Alonso1 and Sergio Nesmachnow2

1 Instituto de F́ısica, Facultad de Ingenieŕıa, Universidad de la República
2 Centro de Cálculo, Facultad de Ingenieŕıa, Universidad de la República

Abstract. This article presents the application of parallel computing
techniques to process satellite imagery information for solar resource
estimates. A distributed memory parallel algorithm is introduced, which
is capable to generate the required inputs from visible channel images
to feed a statistical solar irradiation model. The parallelization strategy
consists in distributing the images within the available processors, and so,
every image is accessed only by one process. The experimental analysis
demonstrate that a maximum speedup value of 2.32 is achieved when
using four computing resources, but beyond that point the performance
rather decrease due to hard-disk input/output velocity.

Keywords: parallel computing, satellite images, solar resource assessment

1 Introduction

Interest in renewable energies—such as solar and wind energy and its related
applications—has strongly increased in the recent years. In Uruguay, a country
with no conventional energy resources such as coal, oil, natural gas or potentially
fissile materials, renewable energies are seen as a way to reduce the dependence of
international oil and energy prices and availability. The Uruguayan government
has set some ambitious national objectives concerning renewable energies, which
are projected to contributed in more than a 50% of the country primary energy
supply by the year 2015. A primordial step for the successful introduction of
renewable energy is resource assessment. Even though the important part that
is expected for renewable energies to contribute into the primary energy mix,
the assessment of the available solar resource at the national territory has been
initiated only recently.

The first solar map of Uruguay was built in 2009 based on a well-established
correlation between irradiation and insolation ground measurements [1]. The
spatial and temporal resolution obtained from methodologies based on correlat-
ing ground-data is very limited, and the method usually requires applying in-
terpolation techniques. Such interpolation techniques provide limited accuracy,
even over small distances. Perez et al. [9] showed that simple satellite-based ir-
radiation models are able to achieve better accuracy for hourly irradiance than
interpolation techniques over distances as short as 30 km. In fact, from an end-
user perspective, it is preferable to rely on satellite hourly estimates than using
ground data from stations located more than 30 km away of the target point.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 34 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

2

Historically, models to assess irradiance estimates using satellite information
were classified into two categories: statistical [7] and physical [8]. Statistical mod-
els use regression techniques between satellite data and ground measurements.
As a result, they require reliable ground measurements to tune some coefficients
to a target region. On the other hand, physical models intend to describe the
physical processes that occur at the atmosphere. Satellite-based solar resource
estimation is also quite recent in Uruguay. The first local implementation of a
irradiation model was done in 2011 [2]. A statistical model was adjusted for the
Uruguayan territory and it was able to perform hourly irradiation estimations
with a spatial resolution of 2km and an uncertainty of 19.8%.

For research purposes, is usually required to process several times a big
amount of satellite images. Typically, processing all the 91950 images database
demands more than a day of computing time. The main contribution of this
article is to present a study devoted to show how parallel computing techniques
help to compute efficiently the satellite inputs required for a satellite-based solar
resource model. A distributed-memory parallel algorithm was developed to as-
sess mean satellite observed brightness in site neighborhoods that are distributed
through the target territory. The utility of the proposed parallel algorithm re-
lies in the possibility of performing in significantly reduced execution times the
processing of the complete image database, which could be useful, for example,
to process several times the data-bank varying the neighborhood size.

The rest of the article is organized as follows, in section 2 a brief description
of the model and the satellite data-bank is presented. Section 3 explains the
main design considerations for the parallel algorithms, while the implementation
details of the proposed algorithm are described in section 4. The experimental
analysis is reported in section 5. Finally, section 6 presents the conclusions of
the research and the main lines for future work.

2 Problem description

This section briefly describes the model implemented in this article to assess
solar irradiation from satellite imagery, and the required satellite information.
Also, a description of the satellite data-bank and its information is offered.

2.1 Satellite-based model for solar resource estimates

The first model that use satellite information to estimate the available solar
resource at ground level adjusted for the Uruguayan territory was the one by
Justus et al. [6]. This model is a parametrization to estimate solar radiation from
satellite data proposed in 1979 by Tarpley et al. [11], modified in 1986 by Tarpley
and colaborators to his actual version, due to some bias problems noticed in the
previous model. We will refer to that second version as JPT model hereafter. The
JPT model is, in fact, an statistical model that utilizes visible channel satellite
information to provide and estimation of the total amount of solar energy at a
given point—specified by his latitude and longitude—at an hourly scale.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 35 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

3

Taking into account the statistical conception of the model, some parameters
must be adjusted for a target region using measurements from both satellite
radiometer and ground pyranometers. The JPT model proposes the multiple
regression presented in Equation 1 where the parameters a, b, c and d are the
regression coefficients.

I = Isc

(r0
r

)2
(

a cos θz + b cos2 θz + c cos3 θz
)

+ d
(

B2

m
−B2

0

)

(1)

In Equation 1, Isc is the hourly value of the solar constant (Isc = 4920 kJ/m2),
cos θz is the cosine of the zenital angle and (ro/r)

2 is a factor that accounts to
the Sun-Earth distance. All these variables could be calculated knowing the spa-
tial position of a site {φ, ψ} (latitude and longitude, respectively) and a given
time {n, h} (day of year and hour) [5].

The information required from satellite images for both operational purposes
and model adjustment, are the values of Bm and B0. Bm is the actual brightness
of a site at a certain time, and B0 is the brightness for the same site and time but
in clear-sky condition. So that, we will refer to Bm simply as a site brightness and
to B0 as a clear-sky brightness. Once the values of cos θz, brightness, and clear-
sky brightness are calculated for every hour for each site, it is possible to make an
estimation of the hourly irradiation, or, if the hourly integral for measurement
is available for a specific site, it is possible to perform an adjustment of the
coefficients a, b, c, and d by using a standard least square technique.

Due to the non-homogeneous shape of clouds and their quick movement
within an hour, the Bm values are averaged in a small cell of a site. If more
than one image is available for the hour, the Bm hourly value is assessed by
the mean value of the values obtained at each image. In order to compute the
clear-sky brightness, a parametrization is trained based on the Bm values. Thus,
the computation of the Bm values by averaging the counts in a small cell of a
site is the base step of the process.

In this article, we focus on the implementation of a parallel algorithm to
perform the computation of the brightness values for equally spaced sites in
latitude and longitude through the Uruguayan territory.

2.2 Satellite image data-bank

Image database consist of observations of the Geostationary Operational Envi-
ronmental Satellite (GOES) located at geostationary orbit at 75 degrees West.
The series of satellites that operated in that position is called GOES-East. An
image for the visible channel and five spectral bands are available. The images
were downloaded from the Comprehensive Large Array-data Stewardship Sys-
tem (CLASS) website that is administrated by the National Oceanic and Atmo-
spheric Administration (NOAA), and available at http://www.class.noaa.gov.
Images from the time period 2000 to date were acquired. The spatial resolution
of the images is about 2km between pixels for the target region and, in average,
there are two images per hour. GOES-East physical device has changed over time
so that the database is compose with GOES8, GOES12 and GOES13 images.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 36 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

4

In total numbers, more than 90.000 images such as the ones presented in
Fig. 1 must be processed in order to compute solar irradiation estimations for all
the data-bank period. Without using parallel computing, processing this amount
of images could take about 15 hours to perform in a single PC/server machine.
Table 1 shows the composition of the satellite data-bank up to April 2012.

Table 1. Satellite database composition

satellite start date end date images

GOES 8 01/01/2000 31/03/2003 24750

GOES 12 01/04/2003 14/04/2010 51900

GOES 13 14/04/2010 30/04/2012 15300

total 01/01/2000 30/04/2012 91950

The images acquired are in NetCDF format, a standard machine-independent
data format that support the creation, access, and sharing of array-oriented
scientific data [10]. Visible channel information is recorded in each file as a data
matrix. Also, every file have his own navigation information due to the fact that
GOES satellite might present orientation movements. Two additional matrices
that correspond with the latitude (lat) and longitude (lon) are available for each
image file. A position (i, j) in the matrices lat and lon correspond to the latitude
and longitude information of the brightness count at the same matrix position.

The spatial window of the target region varies between 30 and 35 degrees
South, and 53 and 59 degrees West, including the Uruguayan territory. A total
of (5× 30)× (6× 30)× 90.000 = 2.43× 109 averages are needed to compute Bm

at cells that are spaced by 5 minutes in latitude-longitude intervals.

(a) Clear-sky image. (b) Partially cloudy image.

Fig. 1. Two examples of visible channel satellite images.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 37 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

5

3 Parallel computing for satellite image processing

This section describes the main details about the parallel model and the design
of the proposed parallel algorithm.

3.1 Context and parallel model

The parallel implementation described in this article is the first step for migrat-
ing the system to a C platform using parallel computing strategies, in order to
implement an efficient operational model for solar image processing. The opera-
tional model will allow researchers to perform efficiently experiments related to
the characterization and prediction of solar energy availability, climate research
(fog, precipitation, cloud classification, etc.), agricultural products like the esti-
mation of evapotranspiration, and other satellite assessed products. As a result,
not only the main parallel algorithm was developed, but also a set of common
libraries that are used by other similar algorithms or may be used by future ones.
The implemented libraries are independent from any parallelization scheme.

Processing a single image takes a reduced execution time (about half a sec-
ond), so each image can be efficiently processed by an individual processor.
Applying parallel processing within each image is not useful from a performance-
oriented point of view, since it severely reduces the granularity of each task, and
causes that several processes simultaneously try to access to the same image or
to write to the same output file.

The real complexity of the tackled problem relies on the large number of
images to process. Thus, a data-parallel scheme was adopted to efficiently solve
the problem. Several processes are used, each one of them conceived to execute in
a different node in a distributed-memory cluster infrastructure. A master-slave
parallel model was adopted as shown in Fig. 2.

Fig. 2. Master-slave parallel model for the satellite image processing algorithm.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 38 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

6

The master process is in charge of performing the domain-decomposition and
the distribution of work to slave processes. The domain decomposition approach
divides the total amount of images into p subsets of time consecutive images,
where p is the total amount of processes. At the beginning of its execution, every
process receives a reference of the first and last image it is supposed to compute.

An active master-slave model is used: the master process also works in the
image processing, performing the same operation than the slave processes.

Cell size may not be the same as the spacing between cells. Spacing between
cells correspond with the spatial resolution of the resulting irradiation map for
every image. On the other hand, cell size is concerned with the accuracy which
with a Bm value, calculated for one particular image time, could represent all
the time interval between two images. In this article, we work with 5 × 5 cell
size and 5 × 5 latitude-longitude spacing between cells. These parameters are
introduced via plain text file by the user, jointly with other configuration options.
An example of a plain text file with input parameters to feed the algorithm is
presented in Fig.3.

/home2/rodrigoa/satellite/TRAW/ % Origin folder

/home2/rodrigoa/satellite/T000/ % Destiny folder
1 % Spectral band to process

2 % Amount of years to process
2005 % First year to process
2009 % Second year to process

35 0 0 59 0 0 % Init of the target region
30 0 0 53 0 0 % Finish of the target region

0 5 0 0 5 0 % Cell’s latitude and longitud spacing
0 5 0 0 5 0 % Cell’s latitude and longitud size

Fig. 3. Example of plain text file with user parameters for the proposed algorithm.

4 Parallel implementation of the image processing

algorithm

This section describes the details of the implemented parallel algorithm. It
presents a description of the set of common libraries implemented and their
characteristics, the parallelization scheme, and other features of the parallel im-
plementation.

4.1 Brief description of implemented libraries

Three libraries were built: (a) a processing library, which implements all the
specific processing duties, (b) an assigment library to assess the distribution of
duties in the parallelization, and (c) a calibration library to perform satellite
calibration and count-to-radiance conversion.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 39 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

7

The processing library implements all the specific functionalities required for
image processing. This library includes the specials features to interact with
NetCDF files, to write down the information to disk, and the logic to process
every image. The reference to the start and finish image is received as a pa-
rameter. The images are scanned and the pixel values are accumulated in the
corresponding cell based on the latitude and longitude information for the pixel.
The average is computed for each every cell by performing the quotient between
the accumulated value and the total amount of pixels counted for that cell.
Finally, the average matrix of equally spaced cell is saved to disk.

In the current version of the processing software, the user is able to specify
which years of images want to process. The assignment library is able to count
how many images were requested to process by scanning hard-disk drive direc-
tories. Also, it has the internal logic to assess the domain-decomposition and the
load balancing that is explained in the next subsection.

Finally, a library for satellite calibration was implemented. A set of coeffi-
cients is applied to the brightness count values to assess satellite observed radi-
ance or to compensate the radiance due to satellite sensor degradation. These
coefficients differ depending on the physical device and time. A different cali-
bration procedure can be applied if a better one is available. Thus, a modular
approach was followed to design the calibration library in order to easily allow
changing this module.

4.2 Load balancing

Taking into account the uniform processing model for images, a static load bal-
ancing scheme was used. All the images in the data-bank have the same size and
the processing of each separately image is exactly the same.

The parallel algorithm was conceived to execute in a dedicated parallel com-
puting infrastructure. Thus, there is no a priori reason to think that a given pro-
cess will result overloaded. In the proposed parallel algorithm, load balancing
is performed simply by dividing the domain into subsets containing the same
amount of images. The experimental evidence showed that in practice, some
processes usually complete its assigned processing before some other ones, when
executing the algorithm in operational mode. However, the deviation from the
ideal equally-time processing is never larger than 20 images when processing a
entire year (approximately 7500 images), corresponding to a negligible value of
less than 10 seconds of execution time.

In the static load balancing scheme used, the distribution of images is done
by the assignment library, which is able to count all the actual images at the
directories. Then, the image assignments are performed based on the available
quantity of processes p and the total amount of images required to process.
The responsibilities for each process is assigned by generating six arrays, which
keep the information about the starting and finishing image for each process.
Thus, two arrays indicate the starting and finishing year, two more indicate the
starting and finishig month and, finally, the last two arrays got the information
about the starting and finishing image’s index in the corresponding starting and

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 40 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

8

finishing folder. The size of these arrays is equal to p, and are such that, when
the k-process, k :: k ∈ {0 . . . (p − 1)}, evaluates them in the k position, they
specify the first and last image of the assignation to that process.

4.3 Algorithm description

The parallel algorithm was implemented in C. The parallelism was implemented
following the MPI standard for parallel and distributed programming [4], by
using the 1.2.7p1 version of the well-known MPICH implementation.

The algorithm is composed by four main stages: (a) initialization and data
parallel distribution (b) upload of images from hard-disk, (c) computation of the
Bm values for each assigned image, and (d) save processed data to hard-disk.
A final step is done by the master process to save some final parameters and
information regarding the size of the cell, the amount of cells, and the grid used
in the processing. A graphical explanation of this scheme is presented in Fig. 4.

Fig. 4. Flow scheme of the stages in the image processing algorithm.

The master process is in charge of performing the initialization phase of the
algorithm. The master reads the user data, initializes some parameters of the
system (e.g. paths, filenames, cell size and spacing), counts the images in the
data-bank, and generates the data for domain decomposition. After that, the
master process send the references about the images, as well as user and system
variables, to each one of the p slave process. Once the initialization phase is
done, every slave process knows all the data needed to work independently. In
particular, each slave have references to the first and the last image to process
and where it has to write down to hard-disk the information about the processing
of each assigned image.

The output of the processing includes six plain text files. Four of them con-
tain the grid values that correspond to the brightness for each cell, and three
subproducts from the image calibration. The last two files are the grid mask that
indicate if a given value in the grid is corrupted or not, and the amount of pixels
counted for each cell in the grid. When a process finishes its assigned processing,
it sends a notification to the master, jointly with a resume of the processing
performed. Since all processes inform the master when they stop working, the
master knows when all the requested processing is done.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 41 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

9

Fig. 5 shows an example of the (optional) user output that the master process
writes after the initialization stage just before creating and launching the slave
processes. In order to illustrate the domain decomposition performed, the sample
case in Fig. 5 shows that the algorithm is executed with four processes executing
on four processing units (p = 4) and the parameters already presented in Fig. 3.
In the presented example, each process is in charge of processing 3892 images
(q = 3892), and 3 out of 4 processes has to compute one extra image (r = 3). A
total number of 15.571 NetCDF files are processed. This kind of output is useful
to inform the user about the system parameters, as a way to know if they are
adequate before processing.

----- rank = [0] :: Processing data ---

Path: /home2/rodrigoa/satelite/TRAW/

Channel to process: [01.nc] Years to process: [2005, 2009]
Amount of images found: [15571] Assigment: q = [3892] :: r = [3]

Amount of nodes = [4]
Amount of cells to process: Ci = [30] :: Cj = [36] :: Ct = [1080]

Latitude region = [-35.000000 ... -30.166667]

Longitude region = [-59.000000 ... -53.166667]
incLAT = [0.083333] :: incLON = [0.083333]

Channel images per month: [826, 718, 744, 594, 539, 403, 469, 560, 411, 710, 840, 862]
842, 707, 683, 596, 568, 486, 542, 510, 679, 770, 716, 796]

Fig. 5. Example of the (optional) master process user output after the initialization
stage, just before launching the slave processes. All system parameters are reported.

5 Performance evaluation

This section describes the computational platform and the image test-set used
in the experimental analysis. After that, the methodology followed in the exper-
imental analysis is described. Finally, the results of the performance analysis are
presented and discussed, with special emphasis on the speedup analysis of the
parallel algorithm.

5.1 Execution platform

The experimental analysis of the proposed parallel algorithm was performed in
a server with two Intel quad-core Xeon processors at 2.6 GHz, with 8 GB RAM,
CentOS Linux, and Gigabit Ethernet. The infrastructure is part of the Cluster
FING, Facultad de Ingenieŕıa, Universidad de la República, Uruguay; cluster
website: http://www.fing.edu.uy/cluster).

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 42 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

10

5.2 Test set images

A test-set of images was used to carry out the performance analysis for the satel-
lite data-bank processing algorithm. NetCDF files that correspond to satellite
images of the year 2011 were used. A total number of 7670 images comprises
the data-bank information for that year, which represent a total disk capacity of
about 60GB. Hard-disk drive used to store the test set was local to the node used
to run the evaluation, to avoid the performance degradation due to transferring
large image files through NFS.

5.3 Methodology

The experimental evaluation studies the execution time of the parallel algorithm
when varying the number of working processes between 2 and 8. This subsection
introduces the performance metrics used to evaluate the parallel algorithm and
the methodology used in the analysis.

Performance metrics. The most common metrics used by the research com-
munity to evaluate the performance of parallel algorithms are the speedup and
the efficiency.

The speedup evaluates how much faster a parallel algorithm is than its corre-
sponding sequential version. It is computed as the ratio of the execution times of
the sequential algorithm (T1) and the parallel version executed on m computing
elements (Tm) (Equation 2). When applied to non-deterministic algorithms, the
speedup should compare the mean values of the sequential and parallel execu-
tion times (Equation 3). The ideal case for a parallel algorithm is to achieve
linear speedup (Sm = m), but the most common situation is to achieve sublin-
ear speedup (Sm < m), mainly due to the times required to communicate and
synchronize the parallel processes.

The efficiency is the normalized value of the speedup, regarding the number
of computing elements used to execute a parallel algorithm (Equation 4). This
metric allows the comparison of algorithms eventually executed in non-identical
computing platforms. The linear speedup corresponds to em = 1, and in the
most usual situations em < 1.

Sm =
T1
Tm

(2) Sm =
E[T1]

E[Tm]
(3) em =

Sm

m
(4)

Statistical analysis of execution times. In order to reduce the effect of non-
determinism in the execution, a well-know side effect of parallel programming [3],
fifty independent execution of the parallel program were performed for each
value of p. For every execution the total time spent for processing the image
data-bank was recorded, and the average execution time of the fifty executions
was computed for every value of p, in order to compute an accurate estimation
for the operation time of the test.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 43 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

11

In addition, an estimation of the time required by the sequential algorithm
was computed by averaging fifty executions. The proposed parallel algorithm
does not modify the algorithmic structure of the sequential version, since only
the image processing is performed in parallel and no additional components
are included. From the algorithmic point of view, the required communication
between master and slave processes to start the execution and return the results
is identical to a standard function calling in a sequential algorithm.

The time required for both the initialization of the MPI environment and
the data parallel distribution are negligible in comparison with the time needed
to processed the images. The final stage of recoding the system parameters and
the grid data, which is performed by the master process, cannot be parallelized.
It is included in the serial fraction of the parallel algorithm, since it demands
the same execution time that when using a sequential algorithm. Taking into
account the previous comments, the time that a sequential algorithm will require
to perform the processing is almost equal to the time that the proposed parallel
algorithm needs when using a single processing element(p = 1).

With the aforementioned execution time values, estimations for the speedup
and efficiency metrics are computed to evaluate the performance of the proposed
parallel algorithm for solar image processing.

Results and discussion. Table 2 reports the best, average, and standard de-
viation (σ) values of the execution times computed in the fifty independent
executions performed for both the sequential and the parallel algorithm for dif-
ferent values of the number of processes p. The corresponding speedup values
for different values of p are also reported.

Table 2. Performance metrics for different values of p.

processes
execution time (s) metric

best avg σ speedup efficiency

1 (sequential) 4555 4786 380 – –

2 2587 2720 316 1.76 0.88

3 2047 2123 214 2.25 0.75

4 1989 2062 130 2.32 0.58

5 2124 2200 136 2.18 0.44

6 2127 2360 293 2.03 0.34

7 2324 2370 36 2.02 0.29

8 2438 2484 32 1.93 0.24

According to the straightforward domain decomposition approach applied in
the proposed parallel algorithm, the performance was expected to increase when
increasing the number of processes. However, the analysis of the execution time
results reported in Table 2 indicates that this behavior only holds for p < 5.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 44 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

12

Fig. 6 shows examples of the estimated average execution time values ob-
tained in the fifty executions of the sequential and the parallel algorithm with
p = 2, p = 4 and p = 8. The figure shows that the majority of the execution
time values are aligned, and the standard deviation tends to reduce when more
processes are used.

0 10 20 30 40 50

20
00

30
00

40
00

50
00

60
00

70
00

number of execution

ex
ec

ut
io

n
tim

e
(s

)

sequential
2 processes
4 processes
8 processes

Fig. 6. Example of the times recorded for fifty executions of the proposed parallel
algorithm for p = 1, p = 2, p = 4, and p = 8.

Regarding the speedup and efficiency metrics, a speedup value of 1.76 was
achieved when working with p = 2 and then it is slightly improved using more
processes, obtaining a maximum speedup value of 2.32 at p = 4. Beyond this
point, using more processes causes the execution times to deteriorate. The most
probable explanation for this phenomena is that the input/output capacity of
the hard-disk drive severely affects the computational efficiency of the proposed
parallel algorithm. Due to the large data transferred, the maximum bandwidth
capacity of the data bus is almost reached using p = 3 and fully achieved using
p = 4. In addition, when a large number of processes (e.g. p > 6) is used, the idle
times due to unbalanced processing also contributes to reduce the computational
efficiency of the proposed parallel algorithm.

The variation of the best and average execution times for different values of p
is presented in Fig. 7. The variation of the values for the speedup and efficiency
metric for different values of p is presented in Fig. 8 (a) and (b), respectively.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 45 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

13

2 4 6 8

20
00

25
00

30
00

35
00

40
00

45
00

50
00

number of processes

ex
ec

ut
io

n
tim

e
(s

)

average time
best time

Fig. 7. Best and average execution times vs. processes used.

2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

number of processes

sp
ee

d
up

(a) speedup vs. processes.

2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of processes

ef
fic

ie
nc

y

(b) efficiency vs. processes.

Fig. 8. Estimated speedup and efficiency vs. processes used. A red line was drawn to
show the ideal linear speedup/efficiency situation

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 46 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

14

6 Conclusions and future work

This article has presented a parallel implementation for an algorithm to process
satellite image information for solar resource estimates.

Nowadays, satellite applications in Uruguay are at a research stage. As a
consequence, satellite imagery is being processed several times. Processing each
image individually does not take many computational effort and half a second
is often spent. The complexity of the problem lies in the big amount of images
that should be processed. The computation of all the database involves to work
with more than 90000 images and a suitable automatic solution to process such
a volume of information is needed. In this line of work, the parallel computing
strategy described in this article was applied to reduce the computation time of
a GOES-East satellite data-bank.

A parallel master-slave algorithm was developed in order to solve the particu-
lar problem of computing the inputs for a satellite-based solar irradiation model.
Also, a set of common libraries were implemented to address specific processing
tasks. The proposed scheme is based on image domain-decomposition in order
to fully exploit the master-slave parallel model when executing in a cluster in-
frastructure.

The experimental analysis show that significant improvements in the exe-
cution times are obtained with the parallel algorithm when compared with the
sequential version. A maximum speedup value of 2.32 was reached by the pro-
posed parallel algorithm when using four processes, but when using more than
four processes the computational efficiency reduces and the execution times in-
crease. The phenomena is explained by the limited input/output hard-disk drive
bandwidth of the infrastructure used. In its current implementation, the algo-
rithm shall be used splitting the work on four processes, to take the best advan-
tage of the parallel platform. Although the proposed parallel algorithm does not
scale appropriately for more than four processes, it is a promising first step in
the quest of designing an efficient automatic tool for solar image processing in
our research context.

The main lines for future work are related to improving the computational
efficiency of the proposed method, by addressing the main issues that conspire
against a good scalability behavior. We plan to implement both a dynamic load
balancing to execute in non dedicated infrastructures, and the parallelization of
hard-disk drive access as a strategy to reduce the negative effects of hard-disk
bounded bandwidth. The distribution of images in different physical hard-disk
drives will aloud to launch processes in nodes with local access to them. This
is expected to increase the efficiency of the parallelization when using more
than four processes, and thus, to decrease execution times in such situation.
Another promising line for future work is the possibility of executing the image
processing in grid infrastructures, in order to take advantage of the large resource
availability of distributed computing platforms.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 47 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

15

Acknowledgments

The work of R. Alonso has been partially supported by ANII and CSIC, Uruguay.
The work of S. Nesmachnow has been partially supported by ANII and PEDECIBA,
Uruguay.

References

1. G. Abal, M. D’Angelo, J. Cataldo and A. Gutierrez, Mapa Solar del Uruguay. IV
Conf. Latinoamericana de Enerǵıa Solar (IV ISES-CLA), 2010 (text in Spanish).

2. R. Alonso, G. Abal, R. Siri, P. Musé and P. Toscano, Solar irradiation assessment
in Uruguay using Tarpley’s model and GOES satellite images. Proceedings of the
2011 ISES Solar World Congress. 2011.

3. I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Addison Wesley, 1995.

4. W. Gropp, E. Lusk and A. Skjellum, Using MPI: portable parallel programming with
the message-passing interface. MIT Press Cambridge, MA, USA, 1999.

5. M. Iqbal, An introduction to Solar Radiation, Academic Press, 1983.
6. C. Justus, M. Paris and J. Tarpley, Satellite-measured insolation in the United

States, Mexico, and South America. Remote Sensing of Environment, vol. 20, pag.
57-83, 1986.

7. M. Noia, C. Ratto and R. Festa, Solar irradiance estimation from geostationary
satellite data: 1. Statistical Models, Solar Energy 51, 449–456, 1993.

8. M. Noia, C. Ratto and R. Festa, Solar irradiance estimation from geostationary
satellite data: 2. Physical Models, Solar Energy 51, 457–465, 1993.

9. R. Perez, R. Seals and A. Zelenka, Comparing satellite remote sensing and ground
network measurements for the production of site/time specific irradiance data, Solar
Energy 60, 89–96, 1997.

10. R. Rew and G. Davis, NetCDF: An Interface for Scientific Data Access, IEEE
Computer Graphics and Applications 10(4), 76–82, 1990.

11. J. Tarpley, Estimating Incident Solar Radiation at the Surface from Geostationary
Satellite Data. Journal of Applied Meteorology, vol. 18, pag. 1172-1181, 1979.

HPCLatAm 2012, pp. 34-48 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 48 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Parallel conversion of satellite image information for a
wind energy generation forecasting model

Germán Gadea, Andrés Flevaris, Juan Souteras, Sergio Nesmachnow,
Alejandro Gutiérrez, and Gabriel Cazes

Universidad de la República, Uruguay
{ggadea,aflevaris,jsouteras,sergion,aguti,agcm}@fing.edu.uy

Abstract. This paper presents an efficient parallel algorithm for the problem of
converting satellite imagery in binary files. The algorithm was designed to update
at global scale the land cover information used by the WRF climate model. We
present the characteristics of the implemented algorithm, as well as the results
of performance analysis and comparisons between two approaches to implement
the algorithm. The performance analysis shows that the implemented parallel al-
gorithm improves substantially against the sequential algorithm that solves the
problem, obtaining a linear speedup.

1 Introduction

Wind prediction is crucial for many applications in environmental, energy, and eco-
nomic contexts. The information about wind is important for weather forecasting, en-
ergy generation, aircrafts and ship traffic, dispersal of spilled fuel prediction, coastal
erosion, and many other issues. In the last thirty years, researchers have made impor-
tant advances in methods and models for wind prediction [1,4].

The Weather Research and Forecasting (WRF) model [8] is a flexible and efficient
mesoscale numerical weather prediction system developed by a collaborative partner-
ship including several centers, administrations, research laboratories and universities in
the USA. With a rapidly growing community of users, WRF is currently in operational
use at several centers, labs and universities through the globe, including our research
group at Instituto de Mecánica de los Fluidos e Ingenierı́a Ambiental (IMFIA) de la
Facultad de Ingenierı́a, Universidad de la República, Uruguay.

In our context, WRF is applied to analyze the availability of wind energy, which
depends on the wind speed, in order to perform accurate forecasting in the range of
24-48 hours, required for the integration of wind energy into the power grid. These
predictions are a valuable help for the power grid operators to make critical decisions,
such as when to power down traditional coal-powered and gas-powered plants.

Soil information is very relevant for wind forecasting using WRF, since the ter-
rain type directly affects the wind received by the generators (usually placed at 100 m
from the ground). The soil information used by the WRF is outdated, and in the case
of Uruguay, the last actualization was performed in the early 1990’s. Thus, there is a
specific interest on updated soli information in order to improve the accuracy of wind
forecasting.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 49 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

In the WRF model, the information about soil is stored in files using a proprietary
binary format. so, in order to perform the soil information update, it is needed to convert
the information obtained from satellite images to the binary format used in WRF. The
conversion process also includes performing a change of projection due to the input
information from satellites has a different projection than the output information.

In order to perform the soil information update not only for our country, but at
planetary scale, a large number of satellite images need to be processed. In this context,
applying high performance computing (HPC) techniques is a valuable strategy to reduce
the execution time required to process the large volume of information in the images.
More than 300 images have to be processed in the world scenario, with a total size of
27 GB, and the sequential algorithm demands 1710 minutes of execution time.

The main contributions of the research reported in this article are: i) to introduce
two parallel versions—using shared memory and distributed memory approaches—of
an algorithm that process the satellite images to update the soil information used for
wind prediction in the WRF model, and ii) to report an exhaustive experimental anal-
ysis that compares the computational efficiency of the shared and distributed memory
parallel versions. The experimental results demonstrate that both parallel implementa-
tions achieve good computational efficiency, and the distributed memory is the most
efficient method for parallelization.

The rest of the manuscript is organized as follows. Next section present a review
of related work on parallel algorithms to process satellite images for wind prediction.
Section 3 describes the design and details of the proposed parallel algorithm. The de-
scription of the two variants implemented are presented in Section 4. The experimental
analysis that compares the two parallel versions and the sequential one is presented in
Section 5. Finally, Section 6 summarizes the conclusions of the research and formulates
the main lines for future work.

2 Related work

Several works have recently addressed the satellite image processing problem using
high-performance computing techniques. These works are mainly focused on process-
ing data received directly from the satellites, making a classification of pixels in order
to obtain land cover information [3,5]. Maulik and Sarkar [3] proposed a strategy for
satellite image classification by grouping the pixels in the spectral domain. This method
allows performing the detection of different land cover regions. A parallel implemen-
tation of the proposed algorithm following the master-slave paradigm was presented
in order to perform the classification efficiently. The experimental analysis on differ-
ent remote sensing data performed on INRIA PlaFRIM cluster varying the number of
processors from 1 to 100, demonstrated that the proposed parallel algorithm is able to
achieve linear speedup when compared against a sequential version of the algorithm.

Nakamura et al. [5] described how the researchers at Tokyo University of Informa-
tion Sciences receive MODIS data to be used in one of the major fields of research:
the analysis of environmental changes. Several applications to analyze environmental
changes are developed to execute on the satellite image data analysis system, which is
implemented in a parallel distributed system and a database server.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 50 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Sadykhov et al. [9] described a parallel algorithm based on fuzzy clustering for pro-
cessing multispectral satellite images to enforce discrimination of different land covers
and to improve area separation. A message passing approach was used as basis of paral-
lel calculation because it allows simple organization of interaction between of calculat-
ing processes and synchronization. Experimental testing of developed algorithms and
techniques has been carried out using images received from Landsat 7 ETM+ Satellite.
However, the article does not report experimental analysis focused on evaluating the
performance improvements when using parallel computing techniques.

Plaza et al. [6,7] described a realistic framework to study the parallel performance
of high-dimensional image processing algorithms in the context of heterogeneous net-
works of workstations (NOWs). Both papers provided a detailed discussion on the ef-
fects that platform heterogeneity has on degrading parallel performance in the context
of applications dealing with large volumes of image data. Two representative parallel
image processing algorithms were thoroughly analyzed. The first one minimizes inter-
processor communication via task replication. The second one develops a polynomial-
time heuristic for finding the best distribution of available processors along a fully het-
erogeneous ring. A detailed analysis of parallel algorithms is reported, by using an
evaluation strategy based on comparing the efficiency achieved by an heterogeneous
algorithm on a fully heterogeneous NOW. For comparative purposes, performance data
for the tested algorithms on Thunderhead (a large-scale Beowulf cluster at NASA God-
dard Space Flight Center) are also provided. The experimental results reveal that het-
erogeneous parallel algorithms offer a surprisingly simple, platform-independent, and
scalable solution in the context of realistic image processing applications.

Unlike the previously commented articles, our research corresponds to a later stage,
which took the land cover information generated by some source and convert it to an-
other format to feed the WRF model. We have designed and implemented two paral-
lel implementations of the conversion algorithm, using shared memory and distributed
memory approaches. Both parallel implementations of the conversion algorithm are
currently operative in our cluster infrastructure (Cluster FING), allowing to perform an
efficient conversion of satellite images downloaded from NASA satellites, in order to
update the information used by the WRF climate model.

3 Conversion of satellite images to binary files

This section describe the main decisions taken to design the parallel conversion algo-
rithm, and the main features of the parallel model used.

3.1 Design considerations

The proposed algorithm implements the conversion of satellite images from the Terra
and Aqua (NASA) satellite to binary files supported by the WRF model.

In the design phase of the algorithm, it was necessary to analyze the input and
output files of the conversion process and the way that the data is contained. After that,
the design of a strategy for converting the information from the input format to the
output format was devised.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 51 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

In order to reduce the large execution times required by a sequential implementation
of the algorithm when processing a large number of images, a parallel implementation
was conceived in order to assure a more efficient processing. The parallel implementa-
tion is capable to convert the full domain requiring significantly lower execution times,
allowing the researchers to scale up and processing world-size scenarios.

3.2 Data-parallel: domain decomposition

The work domain of the WRF model is a grid that covers all the world. Each cell in this
grid represents an area of 600×600 kilometers of land cover. Thus, a straightforward
domain decomposition is suggested by using the WRF grid. Since the WRF grid is the
output of the conversion process, an output domain descomposition is used.

The domain decomposition is achieved by generating small cells that are repre-
sented by matrices with dimensions 1200×1200 (rows by columns). This data partition
is important because it divides the amount of data that each process in the parallel algo-
rithm has to work with.

3.3 Parallel model

Taking into account the characteristics of the algorithm to be parallelized, the selected
domain partition, and mainly because there is no need to use border information in order
to generate one cell of the output domain, a master-slave model was adopted to imple-
ment the parallel algorithms. The use of this model to implement the communication
between the processes seems to be appropriate for the conversion algorithm, because
the slave processes participating in the conversion process do not have to share infor-
mation between each other. Figure 1 presents a graphic representation of the proposed
parallel algorithm, showing the interaction between the different processes.

Fig. 1. Scheme of the proposed parallel algorithm.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 52 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

In the proposed parallel model, the master process initializes all data structures,
variables and control structures, and then continues fully dedicated to control the exe-
cution of the conversion process and implementing a dynamic load balancing schema
for assigning tasks to the slave processes. On the other hand, the slaves processes re-
ceive the assigned work or cell, and then they execute the processing tasks in order to
convert the land cover data, from the satellite format to binary format.

Two variants of the proposed algorithm were implemented with focus on two dif-
ferent paradigms of parallel computing. One variant was implemented using shared
memory, and the other using distributed memory. Both algorithm variants follows the
same general approach, but they are designed to execute on different parallel comput-
ing infrastructures. The shared memory algorithm is conceived to specifically execute
on a multicore computer, while the distributed memory algorithm is able to execute on
a distributed infrastructure, such as a cluster of computers.

Both algorithms have been tested in a hybrid cluster infrastructure formed by many
multicore computers. Testing the algorithms in the same environment makes possible
an analysis comparing the two implementations.

3.4 Load balancing

The two versions of the implemented algorithm gain efficiency by applying a correct
load balance strategy. Taking advantage of the domain partition selected, the proposed
strategy for load balancing is conceived to be performed in two steps. First, at the ini-
tialization step, the master process statically assigns to each slave process a cell to gen-
erate. This initial assignment assures that all the slave processes have a work to perform
at the beginning of their execution. After that, in each execution step, while the master
process has cells to generate and one of the slave processes finish its work, the master
dynamically assigns to that slave another cell. The dynamic cell assignment performed
by the master process keeps the conversion process running and generating cells, while
minimizing the idle time. Each time that one of the slaves processes finishes the gener-
ation of a cell, the master process immediately assigns a new one to be generated, and
the slave keeps working.

4 Parallel implementation of the conversion algorithm

This section presents the implemented parallel algorithms for the conversion process.
In the shared memory algorithm, the master and slaves processes are threads, which are
controlled and synchronized using mutexes In the distributed memory algorithm, the
master and slaves are processes, which use message passing to perform communication
and synchronization.

4.1 Data structures

The common data structures used by the both implemented algorithms are the ones
listed in the Data structure frames 1.1 and 1.2.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 53 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

s t r u c t d e s c r i p t o r H D F{
i n t h ;
i n t v ;
char f i l eName [1 0 2 4] ;
char gridName [6 4] ;

/ / coord SINUSOIDALES
long double l o w e r L e f t L a t s y n ;
long double l o w e r L e f t L o n s y n ;
long double l o w e r R i g h t L a t s y n ;
long double l o w e r R i g h t L o n s y n ;
long double u p p e r L e f t L a t s y n ;
long double u p p e r L e f t L o n s y n ;
long double u p p e r R i g h t L a t s y n ;
long double u p p e r R i g h t L o n s y n ;

/ / coord GEOGRAFICAS
long double l o w e r L e f t L a t g e o ;
long double l o w e r L e f t L o n g e o ;
long double l o w e r R i g h t L a t g e o ;
long double l o w e r R i g h t L o n g e o ;
long double u p p e r L e f t L a t g e o ;
long double u p p e r L e f t L o n g e o ;
long double u p p e r R i g h t L a t g e o ;
long double u p p e r R i g h t L o n g e o ;

} ;

Data structure 1.1. descriptorHDF

The data structure descriptorHDF contains the fields to save the necessary infor-
mation about the satellite imagery files. This data structure saves the coordinates in
geographic projection and in sinusoidal projection. Both groups of coordinates indicate
the area covered by the file. The data structure also contains the fields ’h’ and ’v’ that
indicates the horizontal and vertical position of the HDF file at the satellite imagery
grid, respectively. Other fields are used for the file name and for the object that contains
the information to be converted.

s t r u c t c e l d a S a l i d a{
char n o m b r e A r c h i v o S a l i d a [2 5 6] ;
long double l o w e r L e f t L a t ;
long double l o w e r L e f t L o n ;
long double l o w e r R i g h t L a t ;
long double l owerRigh tLon ;
long double u p p e r L e f t L a t ;
long double u p p e r L e f t L o n ;
long double u p p e r R i g h t L a t ;
long double upperRigh tLon ;

} ;

Data structure 1.2. celdaSalida

The data structure celdaSalida is used in the algorithms to indicate a given slave
process which cell of the output grid it must generate. The data structure contains fields
for the cell coordinates, and the output binary file name. This structure is communicated
between the master and slaves processes when the master assigns a cell to be generated
by the slave process.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 54 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

4.2 Shared memory algorithm

The shared memory version of the conversion algorithm uses a pool of threads, imple-
mented using the standard POSIX thread library (pthread). The algorithm is divided in
three procedures, the procedure that runs the master thread, other for each slave thread,
and the main procedure. The conversion algorithm has two phases. In the first phase,
the main procedure initializes all the threads, mutexes and data structures. The data
structures used by the algorithm are an array of ‘descriptorHDF’ and a matrix of ‘cel-
daSalida’. The shared memory algorithm uses a set of global variables:

– turn: used by each slave thread to indicate the master when it has finished working.
– finish: used to indicates the slave treads to exit.
– iSlave, jSlave: this are two arrays of integer used to indicate which cell generates a

slave. The indexes i and j indicate the position on the matrix ‘celdaSalida’

In the second phase of the algorithm, the master thread first assigns one cell to each
slave, and then it waits for the slave answers, to assign a new cell to the requesting slave.
When all cells have been assigned, the master thread waits until all slaves finish their
work, and then it sets the ‘finish’ variable to true, causing all slaves to exit. On the other
hand, the slaves threads are implemented as a loop that generate cells and performs the
conversion until the ‘finish’ variable is set to true.

On each loop step, the slave processes execute three main tasks. Initially, the as-
signed cell is received; after that, the assigned cell is generated, and finally the master
process is notified that the cell has been generated and the slave process is available
to get a new cell assigned. A pseudocode of the algorithm is presented in Algorithm 1
(main program), Algorithm 2 (master process), and Algorithm 3 (slave processes).

Algorithm 1 Main program
1: initialize mutexes
2: create and initialize master thread
3: create and initialize slave threads
4: //parallel execution
5: wait(for the exit of all threads)
6: destroy(all structures used)

4.3 Distributed memory algorithm

The parallel algorithm has been implemented to be executed in a distributed infras-
tructure such as a cluster of computers, using the C language and the Message Passing
Interface library (MPI) [2]. MPI allows simple organization, communication, and syn-
chronization of the master and the slaves processes.

For the distributed execution, the set of satellite images to convert (with a total size
of 27 GB), was stored in the file system of the cluster, that is accessible by all running
processes.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 55 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Algorithm 2 Master thread
1: for all slave thread do
2: assing(cell to generate)
3: unlock(slave)
4: end for
5: while has cell to be generated do
6: wait(slave answer)
7: receive(answer)
8: assign(new cell to the slave who answered)
9: unlock(slave who answered)

10: end while
11: while are slave working do
12: wait(slave answer)
13: end while
14: finish← true

Algorithm 3 Slave thread
1: isThereWork← true

2: while isThereWork do
3: lock(until work is assigned)
4: if not finish then
5: i← iSlave[my id]

6: j← jSlave[my id]

7: search(HDF files to use)
8: stitch(HDF files)
9: proyectAndSubset(cell to generate)

10: generateBinaryFile()
11: wait(turn to alert the master)
12: turn← my id

13: alert(master)
14: else
15: isThereWork← false

16: end if
17: end while

The creation of distributed processes is configured and built using the available
TORQUE manager in the cluster FING. The number of processes to create, the cluster
nodes to be used, the distribution of processes between nodes, and the priority of the
scheduled job are indicated in a configuration file.

The structure of the algorithm closely matches the shared memory algorithm already
described. In a first step, the master process initializes the data structures, and in the
second stage, the master process begins to perform dynamic load balancing by assigning
the work to the slave processes. Then, it waits the responses from the slaves processes,
and then assigns new work to idle slaves. On the other hand, the slave processes execute
a loop with the following steps: expect a cell to generate, running the conversion process
of the received cell, and finally notifies the end of processing to the master process.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 56 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Slaves remain in this loop until the master process indicates to finish the execution. A
pseudocode of the algorithm is presented in the algorithm 4.

One of the most important tasks in the communication between the master process
and slave processes is sending the array with the information of the input files (descrip-
torHDF). Since this is a large amount of information organized in an array of structs,
the use of the common functions of MPI for sending data (MPI Send) is ineffective,
since they cause corruption in the information. For properly implement the communi-
cation, it was necessary to use specific MPI functions for sending arrays by perform-
ing a serialization of structures (functions MPI Buffer attach, MPI Buffer dettach and
MPI Bsend). The master process has to wait for messages sent by the slave processes
to report that they have finished processing the assigned work, so the master process is
blocked by applying the MPI Recv function using the MPI ANY SOURCE flag, which
allows receiving messages from any process. To find out which process is the source of
communication, the master reads the status parameter returned by the operation and so
is obtained the rank that identifies the slave process.

Algorithm 4 Distributed memory algorithm
1: initialize MPI structures
2: master process do
3: initialize matrix of celdaSalida
4: initialize array of descriptorHDF
5: master process send array of descriptorHDF to all slaves
6: if master process then
7: for i = 1→ #process do
8: send(cell[i], process[i])
9: end for

10: while not receive all slaves answers do
11: waitForAnswer(answer)
12: slave id← answer.slave id

13: cell← answer.cell

14: markCellAsGenerated(cell)
15: if not allCellsGenerated() then
16: cell← nextCell()
17: send(cell, process[slave id])
18: end if
19: end while
20: send finish message to all slaves processes
21: else if slave process then
22: while not receive finish message do
23: cell id← receive()
24: generate(cell)
25: sendMaster(cell id, my id)
26: end while
27: end if

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 57 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

5 Experimental evaluation

This section presents the results of the experimental evaluation for the two parallel
versions of the proposed algorithm.

5.1 Development and execution platform

Both implementations of the parallel conversion algorithms were developed in C. The
distributed algorithm uses MPICH version 1.2.7, and the shared memory algorithm was
implemented using the pthread library. The experimental evaluation was performed in a
server with two Intel quad-core Xeon processors at 2.6 GHz, with 8 GB RAM, CentOS
Linux, and Gigabit Ethernet (Cluster FING, Facultad de Ingenierı́a, Universidad de la
República, Uruguay; cluster website: http://www.fing.edu.uy/cluster).

5.2 Data used in the experimental evaluation

The input of the conversion process is a set with more than 300 image files in HDF
format, with a total size of 28 GB of information. As a baseline reference, converting
all these images with a sequential process takes 1710 minutes.

5.3 Performance metrics

The most common metrics used by the research community to evaluate the performance
of parallel algorithms are the speedup and the efficiency.

The speedup evaluates how much faster a parallel algorithm is than its correspond-
ing sequential version. It is computed as the ratio of the execution times of the sequential
algorithm (TS) and the parallel version executed on m computing elements (Tm) (Equa-
tion 1). The ideal case for a parallel algorithm is to achieve linear speedup (Sm = m),
but the most common situation is to achieve sublinear speedup (Sm < m), mainly due to
the times required to communicate and synchronize the parallel processes.

The efficiency is the normalized value of the speedup, regarding the number of com-
puting elements used to execute a parallel algorithm (Equation 2). The linear speedup
corresponds to em = 1, and in the most usual situations em < 1.

We have also studied the scalability of the proposed parallel algorithm, defined
as the ratio of the execution times of the parallel algorithm when using one and m
computing elements (Equation 3).

Sm =
TS

Tm
(1) em =

Sm

m
(2) Scm =

T1

Tm
(3)

5.4 Performance evaluation and discussion

This subsection presents and analyzes the performance results of the implemented
shared memory and distributed memory parallel algorithms. All the execution time re-
sults reported correspond to the average values computed in five independent execution
performed for each algorithm and experimental scenario.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 58 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Shared memory implementation. The experimental analysis of the shared memory par-
allel implementation was performed on a single host, varying the number of cores used.
Table 1 reports the execution time results and the performance metrics for the for the
shared memory implementation, and Figures 2 and 3 graphically summarize the results.

cores (m) time (minutes) speedup (Sm) efficiency (em) scalability (Scm)
1 1349.00 1.27 1.27 1.00
2 683.00 2.26 1.13 1.78
4 456.00 3.75 0.94 2.96
8 311.67 5.49 0.69 4.33

16 158.00 10.82 0.68 8.54

Table 1. Performance metrics for the shared memory implementation.

(a) Execution time

(b) Speedup

Fig. 2. Execution time and speedup for the shared memory implementation.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 59 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

(a) Efficiency

(b) Scalability

Fig. 3. Efficiency and scalability for the shared memory implementation.

The results in Table 1 indicate that acceptable improvements in the execution times
are obtained when using several cores in the shared memory parallel implementation
of the conversion algorithm. Fig. 2(a) graphically shows the reduction in the execution
times. While the sequential algorithm takes 1710 minutes to perform and the parallel
version running on a single core takes 1349 minutes, the execution time is reduced down
to 158 minutes when using the maximum number of cores available in the execution
platform (16). Fig. 2(b) indicates that when using up to four cores, the parallel algorithm
comes to obtain a linear speedup, and even superlinear speedup when two cores are
used, mainly due to the time improvements in the image loading process. Using more
cores yields to a sublinear speedup behavior, and both the computational efficiency
and the scalability of the algorithm reduces, as shown in Fig. 3. Several factors can
be mentioned as possible explanations for this behavior, including the overhead for the
thread management, the simultaneous bus access, and also that the infrastructure used
has four cores per processor, so the use of the memory bus for accessing the images
have a larger impact when using more than four cores.

Overall, efficient results are obtained for the shared memory implementation of the
parallel conversion process. Speedup values up to 10.82 are obtained when using 16
cores, and the efficiency values are almost linear.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 60 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Distributed memory implementation The experimental analysis for the distributed mem-
ory implementation was performed on a cluster infrastructure, varying the number of
hosts and also the number of cores used in each host. Table 2 reports the execution time
results and the performance metrics for the for the distributed memory implementation,
and Fig. 4 and 5 graphically summarize the results.

host # cores (m) time (minutes) speedup (Sm) efficiency (em) scalability (Scm)

1

1 1313,00 1,30 1,30 1,00
2 783,00 2,18 1,09 1,68
4 421,33 4,06 1,01 3,12
8 260,67 6,56 0,82 5,04

16 158,67 10,78 0,67 8,28

2

2 805.00 2.12 1.06 1.63
4 408.66 4.18 1.05 3.21
8 188.33 9.08 1.13 6.97

16 138.00 2.39 0.77 9.51

4
4 356.67 4.79 1.20 3.68
8 192.33 8.89 1.11 6.83

16 110.00 15.55 0.97 11.94

Table 2. Performance metrics for the distributed memory implementation.

The results in Table 2 indicate that notable improvements in the execution times
are obtained by the distributed memory parallel implementation of the conversion algo-
rithm, specially when distributing the processing in several hosts.

The sequential algorithm takes 1710 minutes to execute in the cluster infrastructure.
When using one host, the best performance was reached when using 16 cores, with an
execution time of 159 minutes. Using up to four cores, the algorithm comes to obtain
a linear speedup as shown in Fig. 4(b). Just like for the sared memory implementation,
using more than four cores yields to a sublinear speedup behavior, and both the compu-
tational efficiency and scalability of the algorithm reduces. Better results are obtained
when distributing the processing in two hosts. The execution time is reduced to 138
minutes when using 16 cores. In this case, the linear speedup/computational efficiency
behavior holds up to the use of eight cores, as shown in Figures 4(b), 5(a).

Finally, when using four hosts, the best results of the analysis are obtained. The
execution time using 16 cores distributed in four hosts is 110 minutes, almost 16 times
faster than the sequential one. The linear speedup/efficiency behavior holds with up 16
cores The scalability of the algorithm also increases up to a value of 11.94.

The previously presented results show that when using the distributed memory al-
gorithm, the better approach is to distribute the execution across several hosts, rather
than using additional cores into a single host. The possible reason for this behavior
is that when more hosts are involved, more resources are available for the distributed
image processing (i.e. memory, disk access, number of open files per process). This is
consistent with the large number of files and memory used by the algorithm.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 61 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

(a) Execution time

(b) Speedup

Fig. 4. Execution time and speedup for the distributed memory implementation.

Comparison: shared memory vs. distributed memory. By comparing the two imple-
mented algorithms, the main conclusion is that the distributed memory version reaches
better performance in the four hosts scenario. As it was already commented, this sit-
uation occurs due to the use of distributed resources, which improves the efficiency
since there is a minimal communication between the master and the slaves, and no data
exchange is performed between slaves. At the same time, by distributing the resources
utilization, the waiting time for input/output and the time added by the operating system
tasks do not impact significantly in the efficiency. The experimental results suggest that
even better performance could be obtained when using an increasing number of hosts.

6 Conclusions and future work

This article presented an efficient algorithm for converting the full domain of land cover
satellite images to the binary files within the WRF model. The proposed method is an
important contribution, as it helps to efficiently generate better wind forecasts.

The implemented parallel algorithm has already been used to generate updated bi-
nary WRF files, an the results are now used for wind forecasting at wind farm Emanuelle
Cambilargiu, Uruguay. In addition, the binaries for full world are published, and the out-
come of this research is currently under examination by experts from NCAR (National
Center for Atmospheric Research, USA) to be included in future releases of WRF.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 62 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

(a) Efficiency

(b) Scalability

Fig. 5. Efficiency and scalability for the distributed memory implementation.

The parallel implementation of the conversion process provided an accurate and ef-
ficient method to perform the image processing. Two implementations, using shared and
distributed memory, were implemented and analyzed. Regarding to the performance re-
sults, both algorithms allowed to obtain significant reductions in the execution times
when compared with a traditional sequential implementation. The shared memory im-
plementation did not scale well when more than four cores are used within the same
host. On the other hand, the distributed memory algorithm have the best efficiency re-
sults: while the sequential algorithm took about 28 hours to perform the conversion, the
distributed memory algorithm executing on 4 hosts takes 110 minutes to complete the
process. A linear speedup behavior was detected for the distributed memory algorithm,
and speedup values of up to 15.55 were achieved when using 16 cores distributed on
four hosts. The computational efficiency is almost one, meaning that we are in pres-
ence of an almost-ideal case of performance improvement. The values of the scalability
metric indicate that the distributed memory implementation of the proposed parallel
algorithm scales well when more hosts are used, mainly due to the minimal need of
communications between the master and slave processes. The presented results suggest
that adding more hosts would improve even more the efficiency, and it also allow to
tackle more complex image processing problems.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 63 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

The main lines for future work are related with further improving the computational
efficiency of the proposed implementations and studying the capability of tackling more
complex versions of the satellite image processing problem. Regarding the first line,
specific details about input/output performance and data bus access should be studied, in
order to overcome the efficiency loss of the shared memory implementation. In addition,
the scalability of the distributed memory implementation should be further analyzed,
specially to determine the best approach for tackling more complex image processing
problems (e.g. with better spatial and time resolution), eventually by using the computer
power available in large distributed computing infrastructures, such as grid computing
and volunteer-computing platforms.

7 Acknowledgments

The work of S. Nesmachnow, A. Gutierrez, and G. Cazes was partially funded by ANII
and PEDECIBA, Uruguay.

References

1. J. Cornett and D. Randerson. Mesoscale wind prediction with inertial equation of motion.
Number 48 in NOAA technical memorandum ERL ARL ;. Air Resources Laboratory, Envi-
ronmental Research Laboratories, Las Vegas, 1975.

2. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with
Message-Passing Interface. MIT Press, 1999.

3. U. Maulik and A. Sarkar. Efficient parallel algorithm for pixel classification in remote sensing
imagery. Geoinformatica, 16(2):391–407, April 2012.

4. C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, and G. Conzelmann. Wind power
forecasting : state-of-the-art 2009. Information Sciences, page 216, 2009.

5. Akihiro Nakamura, Jong Geol Park, Kotaro Matsushita, Kenneth J. Mackin, and Eiji Nuno-
hiro. Development and evaluation of satellite image data analysis infrastructure. Artif. Life
Robot., 16(4):511–513, February 2012.

6. Antonio Plaza, Javier Plaza, and David Valencia. Impact of platform heterogeneity on the
design of parallel algorithms for morphological processing of high-dimensional image data.
J. Supercomput., 40(1):81–107, April 2007.

7. Antonio J. Plaza. Parallel techniques for information extraction from hyperspectral imagery
using heterogeneous networks of workstations. J. Parallel Distrib. Comput., 68(1):93–111,
January 2008.

8. R. Rozumalski. WRF Environmental Modeling System - User Guide. National Weather Ser-
vice SOO Science and Training Resource Center, release 2.1.2.2 edition, May 2006.

9. R. Sadykhov, A. Dorogush, Y. Pushkin, L. Podenok, and V. Ganchenko. Multispectral satellite
images processing for forests and wetland regions monitoring using parallel mpi implementa-
tion. Envisat Symposium, pages 1–6, 2010.

HPCLatAm 2012, pp. 49-64 (full paper)
ISSN 2422-5207

Session: High performance scientific computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 64 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Facial Recognition Using Neural Networks over GPGPU

Juan Pablo Balarini, Martín Rodríguez, and Sergio Nesmachnow

Centro de Cálculo, Facultad de Ingeniería

Universidad de la República, Uruguay

{jbala87, martinr87}@gmail.com, sergion@fing.edu.uy

Abstract. This article introduces a parallel neural network approach imple-

mented over Graphic Processing Units (GPU) to solve a facial recognition prob-

lem, which consists in deciding where the face of a person in a certain image is

pointing. The proposed method uses the parallel capabilities of GPU in order to

train and evaluate a neural network used to solve the abovementioned problem.

The experimental evaluation demonstrates that a significant reduction on com-

puting times can be obtained allowing solving large instances in reasonable

time. Speedup greater than 8 is achieved when contrasted with a sequential im-

plementation and classification rate superior to 85 % is also obtained.

Keywords: Face recognition, Neural Networks, Parallel Computing, GPGPU.

1 Introduction

Face recognition can be described as the ability to recognize people given some set of

facial characteristics. Nowadays, it has become a popular area of research in computer

vision and image analysis, mainly because we can find such recognition systems in

objects of everyday life such as cellphones, security systems, laptops, PCs, etc.

[21,22]. Another key element is that the high computing power now available makes

these image recognition systems possible.

Using an image of a human face, an algorithm is proposed to evaluate and decide

where that face is pointing. Each image is classified into one of four classes according

to the direction where is facing (those classes are: left, right, up and straight).

For certain types of problems, artificial neural networks (ANN) have proven to be

one of the most effective learning methods [2], built of complex webs of intercon-

nected neurons, where each unit takes a number of real-valued inputs and produces a

single real-valued output. Also the Backpropagation algorithm is the most commonly

used ANN learning technique, which is appropriate for problems where the target

function to be learned is defined over instances that can be described by a vector of

predefined features (such as pixel values), also the target function output may be dis-

crete-valued, real-valued, or a vector of several real or discrete-valued attributes. Ad-

ditionally the training examples may contain errors, and fast evaluation of the learned

function may be required. All this makes ANN a good option in image recognition

problems. A survey of practical applications of ANNs can be found on [14].

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 65 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

mailto:martinr87%7d@gmail.com

One of the main inconvenient of ANNs is the time needed to perform the training

phase, which generally is quite high for complex problems. As the number of hidden

layers and neurons grows, the required time for the learning process of the ANN and

for the evaluation of a new instance grows exponentially. On the other hand, the rate

of successful classification of new instances increases as well. Note that generally, the

more training examples the network is provided, the more effective it will be (and the

longer it will take too). Therefore it is of special interest to perform training with a

large number of neurons in the hidden layer and with a significant number of training

examples, but with a relatively low training time.

It is interesting to note that every neuron in each layer can make their calculations

independently of others in the same layer. This means that for any given layer, paral-

lel computations can take place, and some parallel architecture could be used to take

advantage of this.

Promising [20] work is being made in the area of general purpose GPU computing,

principally in problems with parallel nature. GPU implementations allow obtaining

significant reduction in the execution times of complex problems when compared

with traditional sequential implementations on CPU [9]. Despite the fact GPUs were

originally designed for the sole purpose of rendering computer graphics they have

evolved into a general purpose computing platform with enough power and flexibility

to make many computationally-intensive application perform better than on a CPU

[12,13]. This can be explained by the significant disparity between CPUs and GPUs

which rises every year. In this work, we propose an algorithm that takes advantage of

this parallel architecture to obtain an algorithm that outperforms another that uses a

sequential implementation.

This work focuses in the field of machine learning, high performance parallel

computing, and using graphics processing units for general purpose computing, as it

develops an algorithm that significantly improves the ANN training and classification

time, as contrasted with a sequential algorithm.

The main contributions of this article are that a parallel face recognition algorithm

is obtained that develops good classification rates in reasonable execution times, also

this algorithm can be easily modified to recognize other features of a human face

without changing those execution times. Furthermore, it demonstrates how the

GPGPU platform is a very good option when it is desired to improve the execution

time of a certain problem.

The rest of the paper is organized as follows. Section 2 introduces GPU computing

and the CUDA programming model, section 3 presents a conceptual framework then,

section 4 presents related work. Section 5 introduces the proposed solution and pro-

vides implementation details. In section 6 an experimental analysis is made and final-

ly, section 7 presents the work conclusions and future work.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 66 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

2 GPU Computing

GPUs were originally designed to exclusively perform the graphic processing in

computers, allowing the Central Process Unit (CPU) to concentrate in the remaining

computations. Nowadays, GPUs have a considerably large computing power, provid-

ed by hundreds of processing units with reasonable fast clock frequencies. In the last

ten years, GPUs have been used as a powerful parallel hardware architecture to

achieve efficiency in the execution of applications.

2.1 GPU Programming and CUDA

Ten years ago, when GPUs were first used to perform general-purpose computa-

tion, they were programmed using low-level mechanism such as the interruption ser-

vices of the BIOS, or by using graphic APIs such as OpenGL and DirectX. Later, the

programs for GPU were developed in assembly language for each card model, and

they had very limited portability. So, high-level languages were developed to fully

exploit the capabilities of the GPUs. In 2007, NVIDIA introduced CUDA [11], a

software architecture for managing the GPU as a parallel computing device without

requiring mapping the data and the computation into a graphic API.

CUDA is based in an extension of the C language, and it is available for graphic

cards GeForce 8 Series and superior. Three software layers are used in CUDA to

communicate with the GPU (see Fig. 1): a low-level hardware driver that performs

the CPU-GPU data communications, a high-level API, and a set of libraries such as

CUBLAS for linear algebra and CUFFT for Fourier transforms.

Fig. 1. CUDA Architecture

For the CUDA programmer, the GPU is a computing device able to execute a large

number of threads in parallel. A procedure to be executed many times over different

data can be isolated in a GPU-function using many execution threads. The function is

compiled using a specific set of instructions and the resulting program (kernel) is

loaded in the GPU. The GPU has its own DRAM, and the data are copied from it to

the RAM of the host (and vice versa) using optimized calls to the CUDA API.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 67 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

The CUDA architecture is built around a scalable array of multiprocessors, each

one with eight scalar processors, one multithreading unit, and a shared memory chip.

The multiprocessors are able to create, manage, and execute parallel threads, with

reduced overhead. The threads are grouped in blocks (with up to 512 threads), which

are executed in a single multiprocessor, and the blocks are grouped in grids. When a

CUDA program calls a grid to be executed in the GPU, each one of the blocks in the

grid is numbered and distributed to an available multiprocessor. The multiprocessor

receives a block and splits the threads in warps, a set of 32 consecutive threads. Each

warp executes a single instruction at a time, so the best efficiency is achieved when

the 32 threads in the warp executes the same instruction. Each time that a block fin-

ishes its execution, a new block is assigned to the available multiprocessor.

The threads access the data using three memory spaces: a shared memory used by

the threads in the block; the local memory of the thread; and the global memory of the

GPU. Minimizing the access to the slower memory spaces (the local memory of the

thread and the global memory of the GPU) is a very important feature to achieve effi-

ciency. On the other side, the shared memory is placed within the GPU chip, thus it

provides a faster way to store the data.

3 Face Recognition Using Artificial Neural Networks in GPU

3.1 Face Pointing Direction

The face pointing direction problem consists in recognizing where a human face is

pointing (up, left, right and center) in a certain image. This problem has many practi-

cal applications such as detecting where a driver is looking while driving (raising an

alarm if the driver fell asleep), a computer mouse for impaired people that moves

according to head movements (i.e. face direction), a digital camera software that only

takes a picture if all individuals are looking at the camera, etc. Traditional methods to

solve this problem include ANNs [17, 2], evolutionary algorithms [15, 16], problem

specific heuristics, etc., but in general, sequential implementations are used.

3.2 Artificial Neural Networks

ANNs provide a general practical method for learning real-valued, discrete-valued,

and vector-valued functions from examples. Several algorithms (such as backpropa-

gation) can be used to tune network parameters to best fit a training set of input-

output pairs. ANNs are robust to errors in the training data and has been successfully

applied to problems such as image recognition, speech recognition, and learning robot

control strategies [2].

Figure 2 presents the general schema of an ANN. There is a set of neurons connected

with each other. Each neuron receives several input data, perform a linear combina-

tion (result a) and then produces the result of the neuron, which is the evaluation of

some function f(x) for the value x = a.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 68 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Fig. 2. Schema of an ANN.

The neurons are grouped in several layers:

 Input layer: receives the problem input

 Hidden layer/s: receives data from other neurons (typically from input layer or

from another hidden layer), and forwards the processed data to the next layer. In an

ANN, there may be multiple hidden layers with multiple neurons each.

 Output layer: this layer may contain multiple neurons and it determines the output

of the processing for a certain problem instance.

Fig. 3 shows a schema for a neuron. First, a linear combination of the neuron input

data (weights , and an independent coefficient is made. Then

the output is evaluated at some well-known activation function, to produce the neuron

output.

Fig. 3. Schema of a single neuron in an ANN.

3.3 Face Recognition Using GPGPU

In this article, an ANN is used to solve the face recognition problem, trained with the

backpropagation algorithm. Backpropagation learns the weights for a multilayer net-

work with a fixed set of units and interconnections, by applying the gradient descent

method to minimize the squared error between the network output values and the

target values for these outputs. The learning problem faced by backpropagation im-

plies searching in a large space defined by all possible weight values for all neurons.

The backpropagation method applied in this work (stochastic gradient descent version

for feedforward networks) is described in Algorithm 1.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 69 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Backpropagation (training_examples, , , ,)

Each training example is a pair of the form〈 ⃗ ⃗〉, where ⃗ is the vector of

network of input values, and ⃗ is the vector of target network output values.

 is the learning rate, is the number of network inputs, the num-

ber of units in the hidden layer, and the number of output units.

The input unit from unit i into unit j is denoted , and the weights from

unit i to unit j is denoted .

 Create a feed-forward network with inputs, hidden units, and

output units.

 initialize all network weights to small random numbers

 while the termination condition is not met, do

 for each 〈 ⃗ ⃗〉 in training_examples,do

 {propagate the input forward through the network}

input the instance ⃗ to the network and compute the output of every unit

 in the network

 {propagate the errors backward through the network}

for each network output unit , calculate its error term

for each hidden unit , calculate its error term

 ∑

update each network weight

 , where

Algorithm 1. Stochastic gradient descent version of the backpropagation algorithm for feed-

forward networks.

Algorithm 1 begins by constructing a network with the desired number of hidden and

output units and initializing all network weights to small random numbers. Given this

fixed network structure, the main loop of the algorithm iterates over the training ex-

amples. For each training example, it applies the network to the example, computes

the gradient with respect to the error on this example, and then updates all weights in

the network. This gradient step is iterated (using the same training examples multiple

times) until the network performs acceptably well [2]. For evaluating a single instance

(not to train the network), only the propagation of the input data through the network

is made. The presented ANN uses neurons of sigmoid type with activation function:

 (1)

To solve the face recognition problem in GPU, a specific version of the backpropaga-

tion algorithm was implemented. The generic schema in Algorithm 1 was adapted to

execute on a GPU, mainly taking into account the communication restrictions be-

tween the GPU processing units. Before calling a function that runs on GPU a func-

tion-dependent domain decomposition is applied. In general, certain GPU threads are

assigned to execute over certain neurons on the ANN. The domain decompositions

are always performed to maximize the parallel execution, (i.e. each GPU thread can

work independent from each other), and to avoid serializations in the memory access.

A detailed description of domain decomposition is presented in section 5.2.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 70 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Figure 4 presents a schema of the ANN training, showing that the train() function

is a concatenation of functions that execute in parallel.

Fig. 4. ANN training: parallel approach.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 71 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

4 Related Work

Lopes and Ribeiro [9] presented an analysis of an ANN implementation executing on

GPU, showing how the training and classification times can be reduced significantly

(ranging from 5 to 150, depending on the complexity of the problem). They also

conclude that the GPU scales better than the CPU when handling large datasets and

complex problems. In this work the authors recognizes two sources of parallelism: the

outputs of the neurons can be computed in parallel, and all the samples (patterns) on a

dataset can be processed independently. The parallel ANN takes advantage of paral-

lelism in the three training phases (forward, robust learning and backpropagation).

Several problems were tackled in the experimental analysis, including solving f(x) =

sin(x)/x, and several classification and detection problems such as: the two-spirals

problem, the sonar problem, the covertype problem, the poker hand problem, the ven-

tricular arrhythmias problem and face recognition of the Yale face database [18],

containing 165 gray scale faces images of 6464 pixels of 15 individuals.

Jang et al. [6] introduced a parallel ANN implementation using CUDA applied to

text recognition on images. Processing times up to 5 times faster than a CPU imple-

mentation were obtained. In this work, parallelism is achieved through computing in

parallel all the linear combinations made when some neuron calculates their output,

and also when the sigmoid function is computed on each neuron. In this case, text

detection was performed over three image sizes (320240, 571785 and

115215466), always using 30 neurons on the hidden layer.

Solving a similar problem, Izotov et al. [7], used an ANN-based algorithm to rec-

ognize handwritten digits, using a CUDA-based implementation. The training time

improvements were about 6 times less than an algorithm executed on CPU, and on

instance classification there were reductions of about 9 times in execution time. This

work represented some ANN features as matrixes and took advantage of the

CUBLAS library (a linear algebra library over CUDA driver level) for calculating

matrix multiplications (thus achieving parallelism) using 8-bit gray scale 2828 pixel

image instances of handwritten digits from the public domain MNIST database [19].

Nasse et al. [8] solved the problem of locating the direction of a human face in

space, using ANN on a GPU. Parallelization of the solutions was achieved through

dividing the image into several rectangles, and computing each one in parallel. This

implementation obtains classification values up to 11 times faster than an implemen-

tation which runs on CPU, and was trained using 6000 non-faces and 6000 faces with

three different sizes (378278, 640480 and 800600 pixels).

Shufelt and Mitchell [4] solved a similar problem to the one proposed in this work

(deciding whether an image is of a certain person or not) by using a sequential meth-

od. Their proposal was the starting point for the parallel solution presented here.

The analysis of the related work allows concluding that ANN implementations that

execute over a GPU can obtain very good results when contrasted with a CPU-only

implementation. Taking this fact into account, our purpose here is to develop an ANN

to recognize certain features of a human face in a short period of time. If training time

can be reduced considerably by using parallel GPU infrastructures, the solution will

overcome one of the main disadvantages of traditional ANN implementations.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 72 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

5 Implementation Details

The proposed parallel implementation applies the ideas in the sequential algorithm by

Shufelt and Mitchell [4] for recognizing if a given picture is of a certain person. Thus,

the method has to be slightly modified to obtain the expected solution for the face

recognition problem. Moreover, in the parallel implementation, the possibility of

working with a second layer of hidden neurons was included.

5.1 Software modules

The proposed solution uses five modules, which implement all functions needed by

the algorithm. First, facetrain.cu contains the main method and is the module that

performs the calls to the other functions. Then, backprop.cu implements the ANN and

all the auxiliary functions needed to work with it. The proper interaction between the

ANN and the images is solved in imagenet.cu. The pgmimage.cu library is used to

work with images in pgm format. Finally, constants.h contains the entire configura-

tion for the correct execution of the algorithm.

Training is a key element in the algorithm. The diagram in Fig. 5 explains the re-

quired steps needed to train the ANN for the entire trainset.

Fig. 5. ANN training: functional schema.

The GPU architecture is best exploited when performing training and classification.

For example (see Fig. 6), when forwarding from input layer to hidden layer, the paral-

lel algorithm creates as many blocks as neurons are in the hidden layer (each block

will work with one neuron on the hidden layer), and each thread in a block will com-

pute the linear combination of the weight that goes to that hidden neuron by the data

that comes from the input layer (the algorithm works with the same number of threads

per block as input neurons are). Similar levels of parallelism are achieved in the rest

of the functions, obviously changing the role of each block and each thread in a block.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 73 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Fig. 6. Parallelism example: forwarding from input layer to hidden layer.

5.2 Tasks Executed on GPU

Key parameters such as the grid and block size used for the function invocations per-

formed on GPU are of special interest for the overall performance of the algorithm.

The following functions are called in both the training and evaluation tasks. The func-

tion load_input_with_image() is called with as many block as rows the image has, and

as many threads per block as columns the image has. This function loads each image

into the neurons of the input layer for later use (each block loads a row of the image).

After that, forward_input_hidden() computes the outputs of the neurons in the hidden

layer, using the data from the input layer. It is called with as many blocks as the num-

ber of hidden neurons in the network and as many threads per block as the GPU al-

lows (1024 in our case). Each block computes the output of one neuron on the hidden

layer, which is the linear combination performed by several threads (see Section 2).

The function forward_hidden() works like the previous function, obtaining the output

of the hidden layer. Next, load_output() loads the expected output of the ANN for a

certain image. It is invoked with one block with one thread because of its simplicity.

The function evaluate_performance() computes the error of an image and checks if

the output of the ANN matches the expected one. It is called with one block with one

thread, due to the small processing performed. The functions bpnn_output_error()

and bpnn_hidden_error() are used to compute the error in the output and hidden lay-

er, respectively. The first one is called with one block and with as many threads per

block as output neurons the ANN has. The second one with as many blocks as hidden

neurons are and with as many threads per block as output neurons are. The function

bpnn_adjust_weights_hidden() adjust the weights from the hidden layer to the output

layer. It is called with as many blocks as output neurons are, and with as many threads

per block as number of hidden neurons are plus one. For each block, it adjusts the

weights that go from hidden neurons (as many as threads) to output neurons. Finally,

bpnn_adjust_weights_input() adjusts weights that go from input layer to output layer.

It works like the previous function, with the difference that the number of threads

must be larger, due to the number of neurons the input layer has.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 74 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

5.3 Other GPU considerations

Throughout the provided implementation, all constants have their type defined. This

implementation decision was made because a precision loss was detected when per-

forming conversions (e.g. double to float), affecting the numerical efficacy of the

proposed algorithm. Since all GPU memory must be contiguous, static structures are

used, because when transferring data from CPU to GPU the cudaMemcpy function

copies only contiguous memory directions. Moreover, the CPU stack size had to be

enlarged to 512 MB in order to allow storing 128120 images or larger.

In addition, certain implementation decisions were taken to improve the final per-

formance of the proposed algorithm. First, it was decided to use shared memory in

certain GPU kernels, to hide the latency of global memory access. Another element to

take into account is that most threads running on GPU performed several calculations,

in order to avoid the limit for the number of threads per block in the execution plat-

form (1024 in CUDA compute capabilities 2.0).

A weakness of the implementation is that heavily relies on the used hardware (es-

pecially with the compute capabilities of the graphics card). This will impact on the

number of threads per block that can be created and in the use of certain CUDA func-

tions (i.e. use of the atomicAdd function with data of float type).

6 Experimental Analysis

This section reports the results obtained when applying the parallel GPU implementa-

tions of the face pointing direction problem for a set of problem instances. A compar-

ative analysis with a sequential implementation is performed, and the obtained

speedups (the quotient between execution time in the sequential implementation and

execution time in the parallel implementation) are also reported.

6.1 Development and Execution Platform

The GPU algorithm was developed on an AMD Athlon II X3 445 processor at 3.10

GHz, with 6 GB DDR3 RAM memory at 1333 MHz, a MSI 880GM-E41 mother-

board, and a GeForce GTS 450 GPU with 1 GB of RAM.

The experimental analysis of the proposed algorithm executions was carried out on

two platforms. Validation experiments using small-sized images were performed on

the development platform, using a 500 GB SATA-2 disk with RAID 0 running Ub-

untu Linux 11.10 64 bits Edition.

The limited computing power of the development platform did not allow taking

full advantage of the parallel features proposed by the algorithm. Thus, a more com-

prehensive set of experiment including large images were performed in a more pow-

erful platform, the execution platform, consisting in a Core i7-2600 processor at 3.40

GHz processor with 16 GB DDR3 RAM memory, with Fedora 15 64 bits Edition

operating system, and a GeForce GTX 480 GPU with 1536 MB of RAM.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 75 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

6.2 Problem Instances

Both sets of problem instances used for training and classification were obtained from

the work by Shufelt and Mitchell [4]. These are images of different people in different

poses. For each person and pose, the image comes in three sizes: 3230 pixels, 6460

and 128120 pixels. There are about 620 images, which are divided in three sets, one

for the network training and the other two to measure its effectiveness (trainlist and

testlist, respectively). Also, a scaling of the images was performed in order to carry

out executions with larger images to contrast these executions with the previous ones.

The scaling was performed in two sizes: 256240 and 512480.

This variety of instance types (different image sizes) allows to take advantage of

the GPU platform to the maximum because for instances of small size (i.e. 3230

pixels, 6460 pixels) both platforms perform similarly, while for images of larger

sizes a clear difference between the two platforms begins to notice. This is mainly

because the GPU platform has much more processing units than the CPU (yet at a

lower speed), so if many calculations at once are required, there will be more availa-

ble computing resources in GPU than in CPU.

6.3 Results and Discussion

To validate the algorithm it was considered that the rate of correctly classified images

for new instances should be greater than 80% and the speedup gain over the sequen-

tial algorithm should be at least 2.

All values shown below correspond to algorithm executions with a training set

consisting of 277 images (training set) and two test sets of 139 and 208 images re-

spectively (train1 set and train2 set). In first instance, training over the ANN is made

with every image in the training list, then performance is evaluated using images from

test set 1 and 2 (this concludes a cycle). This is performed 100 times (100 epochs) to

complete an execution cycle. The presented values correspond to the average of 50

execution cycles with an ANN with 100 neurons in the hidden layer.

Solution Quality

Since the proposed parallel implementation does not modify the algorithmic behavior

of the sequential implementation, the obtained results with the GPU implementation

are nearly the same than those obtained with the sequential version for all the studied

instances. Table 2 and table 4 show correctly classified instances (in percentage) for

both sequential and parallel algorithm and the learning rate and momentum constants

that were used. Classification rates close to 80% are achieved for images of 512480

pixels in both development and execution platform. For the development platform

best results are obtained with images of 3230 pixels where classification rate close to

93% is obtained as for the execution platform classification rate close to 92% is

achieved for both 3230 and 6460 and 128120 pixel images.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 76 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Execution Times

This subsection reports and discussed the execution time and performance results for

the GPU implementation of the proposed algorithm. All execution times reported are

the averages and its correspondent standard deviation values, computed in 50 inde-

pendent execution of the parallel algorithm for each scenario.

Validation experiments on the development platform. Table 1 reports the execution

times (in seconds) for the sequential and parallel implementations of the algorithm

and the values of the speedup metric, in the development platform. Table 2 shows the

classification rates obtained for both the sequential and parallel implementation, and

the corresponding constants used for learning rate and momentum.

Table 1. Execution times (in seconds) in the development platform

image size sequential parallel speedup

32×30 51.94 ± 0.57 56.22 ± 0.02 0.92

64×60 474.38 ± 18.90 147.54 ± 0.61 3.21

128×120 3665.99 ± 21.60 667.41 ± 2.26 5.49

256×240 16103.48 ± 80.41 3174.47 ± 1.84 5.07

512×480 67114.06 ± 132.66 14760.04 ± 1.55 4.54

Table 2. Correctly classified instances in the development platform

image size sequential parallel learning rate momentum

32×30 93.16% 92.91% 0.30 0.30

64×60 88.60% 88.83% 0.30 0.30

128×120 87.63% 86.79% 0.30 0.30

256×240 86.44% 86.56% 0.10 0.20

512×480 79.11% 79.80% 0.03 0.20

Experimental analysis on the execution platform. Table 3 reports the execution times

for both sequential and parallel implementation, as well as the speedup obtained in

experiments performed in the execution platform. Table 4 shows the classification

rates obtained for each implementation and the corresponding constants used for

learning rate and momentum.

Table 3. Execution times (in seconds) in the execution platform

image size sequential parallel speedup

32×30 19.56 ± 0.24 34.29 ± 0.14 0.57

64×60 111.06 ± 2.94 61.69 ± 0.85 1.8

128×120 502.54 ± 7.95 224.09 ± 0.08 2.24

256×240 8633.87 ± 17.09 1019.13 ± 0.15 8.47

512×480 34540.95 ± 24.65 4777.90 ± 0.53 7.23

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 77 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Table 4. Correctly classified instances in the execution platform

image size sequential sequential learning rate momentum

32×30 92.07% 91.96% 0.30 0.30

64×60 92.20% 91.84% 0.30 0.30

128×120 87.16% 91.35% 0.30 0.30

256×240 86.55% 86.55% 0.10 0.20

512×480 80.31% 78.63% 0.03 0.20

Speedup comparison. Fig. 7 summarizes the acceleration when using a GPU imple-

mentation, contrasted with using a sequential implementation in CPU, for the differ-

ent image sizes and platforms used in the experimental analysis. The speedup evalu-

ates the quotient between the execution time of the sequential implementation and the

execution time in the parallel implementation in GPU.

Fig. 7. Speedup comparison.

The speedup values in Fig. 7 indicate that the best acceleration is obtained for im-

ages with dimension 256240 pixels, where the algorithm reaches the compute capa-

bilities of the graphic card. The results in Tables 1 and 3 indicate that significant im-

provements on the execution times are obtained when using the parallel version of the

algorithm with images of size 6460 or larger. When solving images of size 3230,

the GPU implementation was unable to outperform the execution times of the CPU-

only implementation, mainly due to the overhead introduced by thread creation and

management and the use of the GPU memory. However, when solving larger problem

instances, significant improvements in execution times are achieved, especially for

images of size 256240 pixels, where a speedup of 8.47 is obtained.

The previous results indicate that the parallel implementation of the face recogni-

tion algorithm executing on GPU provides significant reductions on the execution

times over a traditional sequential implementation in CPU, especially when large

images are processed.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 78 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

7 Conclusions and Future Work

ANNs have proven to be suitable for solving many real world problems. However, the

large execution times required in the training phase sometimes exclude ANNs from

being an option when using large datasets or when solving complex problems.

Nowadays, parallel computing on GPUs allows achieving important performance

improvements over CPU implementations. In this article, a parallel GPU algorithm

was proposed for solving the face recognition problem using ANNs.

The parallel GPU algorithm was designed and implemented to take advantage of

the specific features of GPU infrastructures, in order to provide an accurate and effi-

cient solution to both the training process using the well-known backpropagation

algorithm, and the face recognition problem itself.

The overall parallel strategy used is based on many threads running on GPU, each

one working with several neurons, and trying to maintain the threads as independent

as possible. Every kernel function was designed to take advantage of the execution

platform, optimized to obtain the best performance (e.g. some kernels are assigned to

perform more than one neuron calculations to avoid the overhead of thread creation).

Also, shared memory was exploited in order to avoid global memory access latency.

The experimental analysis demonstrates that the parallel algorithm in GPU allowed

obtaining significant improvements in the execution times when compared with a

traditional sequential implementation. Speedup values up to 8.47 were obtained when

solving problem instances with images of 256240 pixels, and 7.23 for images of

512×480 pixels. These results confirm that to take advantage of the GPU computing

power, the algorithm should be used to process images of considerable sizes.

The main contributions of this article include a parallel face recognition algorithm

in GPU that is able to obtain accurate classification rates in reasonable execution

times. The algorithm can be easily modified to recognize other features of a human

face, without significant changes in the expected execution times.

The research reported in this article demonstrates that the GPGPU platform is a

very good option to speed up the resolution of complex problems. Furthermore, the

results indicate how the growing technological evolution of graphic cards helps to

tackle more complex classification problems using ANNs, which can be solved accu-

rately and in reduced execution times.

The main lines for future work include further improving the computational effi-

ciency of the presented algorithm and tackling other classification/image processing

problems using ANNs implemented on GPU. Regarding the first line of work, im-

proved execution time results can be obtaining by adjusting the parameters of each

kernel invocation, to avoid problems such as thread divergence or better use of the

GPU resources (i.e. shared memory) for larger images. Also, some algorithm con-

stants (such as momentum and learning rate) could be auto-tuned by the algorithm to

obtain the best classification rates as possible. Regarding the second line, it will be of

special interest to implement GPU algorithms to recognize generic features of people

images, such as skin color, if it has sunglasses or not, etc., configurable at run time.

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 79 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

References

1. Kyong, K. and Jung, K.: GPU Implementation of Neural Network. Pattern Recognition,

vol. 37, no. 6, pp. 1311-1314. Pergamon (2004)

2. Mitchell, Tom: Machine Learning. McGraw Hill (1997)

3. Bishop, Christopher M.: Pattern Recognition and Machine Learning. Springer (2006)

4. Mitchell, T. and Shufelt, J.: Neural Networks for Face Recognition,

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ ftp/faces.html. Accessed June 2012.

5. Neural Network on GPU, http://www.codeproject.com/Articles/24361/A-Neural-Network-on-GPU

Accessed June 2012

6. Jang, H., Park, A. and Jung, K.: Neural Network Implementation Using CUDA and

OpenMP, Proc. of Computing: Techniques and Applications, pp.155-161. IEEE (2008)

7. Izotov, P., Kazanskiy, N., Golovashkin, D. and Sukhanov, S.: CUDA-enabled implementa-

tion of a neural network algorithm for handwritten digit recognition, Optical Memory &

Neural Networks, vol. 20, no. 2, pp.98-106. Allerton Press, Inc (2011)

8. Nasse, F., Thurau, C. and Fink, G.: Face Detection Using GPU-Based Convolutional Neu-

ral Networks, Proc. of Computer Analysis of Images and Patterns, pp. 83-90. Springer

Berlin (2009)

9. Lopes, N. and Ribeiro, B.: An Evaluation of Multiple Feed-Forward Networks on GPUs,

International Journal of Neural Systems, vol. 21, no. 1, pp. 31-47. World Scientific Pub-

lishing Company (2011)

10. LeCun, Y., Bottou, L., Orr, G. and Muller, K.: Efficient Backprop in Neural Networks-

Tricks of the Trade, Springer Lecture Notes in Computer Sciences, vol. 1524, pp. 5-50.

Springer (1998)

11. NVIDIA. CUDA C Programming Guide Version 4.1, http://developer.download.nvidia.com/

compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf. Accesed June 2012

12. Steinkrau, D., Simard, P. and Buck, I.: Using GPUs for machine learning algorithms, Proc.

of 8th Int. Conf. on Document Analysis and Recognition, pp. 1115–1119 (2005)

13. Catanzaro, B., Sundaram, N. and Keutzer, K.: Fast support vector machine training and

classification on graphics processors, Proc. of 25th International Conference on Machine

Learning, 2008, pp. 104–111. ACM (2008)

14. Rumelhart, D., Widrow, B. and Lehr, M.: The basic ideas in neural networks, Communica-

tions of the ACM, 37(3) pp. 87-92. ACM (1994)

15. Huang, S., Fu, L., Hsiao, P.: A framework for human pose estimation by integrating data-

driven Markov chain Monte Carlo with multi-objective evolutionary algorithm, Proc.

of Int. Conf. on Robotics and Automation, pp. 3748–3753 (2006)

16. Murphy-Chutorian, E., Trivedi, M.: Head Pose Estimation in Computer Vision: A Survey,

IEEE Trans. on Patt. Analysis and Machine Intelligence, 2009, pp. 607–626. IEEE (2009)

17. Bishop, Christoper M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford

(1995)

18. Yale Face Database, cvc.yale.edu/projects/yalefaces/yalefaces.html. Accessed June 2012

19. LeCun, Y. and Cortes, C.: The MNIST Database of Handwritten Digits, MNIST Handwrit-

ten Digit Database, http://yann.lecun.com/exdb/mnist. Accessed June 2012

20. CUDA Spotlights, http://developer.nvidia.com/cuda-spotlights. Accessed June 2012

21. Ng, C., Savvides, M. and Khosla, P.: Real-time face verification system on a cell-phone

using advanced correlation filters, Proc. of 4th IEEE Workshop on Automatic Identifica-

tion Advanced Technologies, pp. 57–62. IEEE (2005)

22. Venkataramani, K., Qidwai, S. and Vijayakumar, B.: Face authentication from cell phone

camera images with illumination and temporal variations, IEEE Trans. on Systems, Man,

and Cybernetics, Part C, vol. 35, pp. 411 – 418. IEEE (2005)

HPCLatAm 2012, pp. 65-80 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 80 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/%20ftp/faces.html
http://www.codeproject.com/Articles/24361/A-Neural-Network-on-GPU
http://developer.download.nvidia.com/%20compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/%20compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://yann.lecun.com/exdb/mnist
http://developer.nvidia.com/cuda-spotlights

Parallel implementations of the MinMin
heterogeneous computing scheduler in GPU

Mauro Canabé and Sergio Nesmachnow

Centro de Cálculo, Facultad de Ingenieŕıa
Universidad de la República, Uruguay
{mcanabe,sergion}@fing.edu.uy

Abstract. This work presents parallel implementations of the MinMin
scheduling heuristic for heterogeneous computing using Graphic Process-
ing Units, in order to improve its computational efficiency. The exper-
imental evaluation of the four proposed MinMin variants demonstrates
that a significant reduction on the computing times can be attained, al-
lowing to tackle large scheduling scenarios in reasonable execution times.

Keywords: GPU computing, heterogeneous computing, scheduling.

1 Introduction

In the last fifteen years, distributed computing environments have been increas-
ingly used to solve complex problems. Nowadays, a common platform for dis-
tributed computing usually comprises a heterogeneous collection of computers.
This class of infrastructures includes grid computing and cloud computing envi-
ronments, where a large set of heterogeneous computers with diverse character-
istics are combined to provide pervasive on demand and cost-effective processing
power, software, and access to data, for solving many kinds of problems [7,18].

A key problem when using such heterogeneous computing (HC) environments
consists in finding a scheduling strategy for a set of tasks to be executed. The
goal is to assign the computing resources by satisfying some efficiency criteria,
usually related to the total execution time or resource utilization [4,13]. The het-
erogeneous computing scheduling problem (HCSP) became specially important
due to the popularization of heterogeneous distributed computing systems [5,8].

Traditional scheduling problems are NP-hard [9], thus classic exact methods
are only useful for solving problem instances of very reduced size. Heuristics
methods are able to get efficient schedules in reasonable times, but they still
require long execution times when solving large instances of the scheduling prob-
lem. These execution times (i.e., in the order of an hour) can be extremely high
for performing on-line scheduling in realistic HC infrastructures.

High performance computing techniques can be applied to reduce the execu-
tion times required to perform the scheduling. The massively parallel hardware
in Graphic Processor Units (GPU) has been successfully applied to speed up the
computations required to solve problems in many application areas [11], showing
an excellent trade-off between cost and computing power [16].

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 81 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

The main contribution of this work is the development of four parallel im-
plementations on GPU for a the classic and effective scheduling heuristic Min-
Min [12]. The experimental evaluation of the proposed parallel methods demon-
strates that a significant reduction on the computing times can be attained when
using the parallel GPU hardware. This performance improvement allows solving
large scheduling scenarios in reasonable execution times.

The manuscript is structured as follows. Next section introduces the HCSP
mathematical formulation, and the heuristics studied in this work. A brief intro-
duction to GPU computing is presented in Section 3. Section 4 describes the four
proposed implementations of the MinMin heuristic on GPU. The experimental
evaluation of the proposed methods is reported in Section 5, where the efficiency
results are also analyzed. Finally, Section 6 summarizes the conclusions of the
research and formulates the main lines for future work.

2 Heterogeneous computing scheduling

This section presents the HCSP and its mathematical formulation. It also pro-
vides a description of the class of list scheduling heuristics, and describes the
MinMin method parallelized in this work.

2.1 HCSP formulation

An HC system is composed of many computers, also called processors or ma-
chines, and a set of tasks to be executed on the system. A task is the atomic
unit of workload, so it cannot be divided into smaller chunks, nor interrupted
after it is assigned to a machine. The execution times of any individual task vary
from one machine to another, so there will be competition among tasks for using
those machines able to execute them in the shortest time.

Scheduling problems mainly concern about time, trying to minimize the time
spent to execute all tasks. The most usual metric to minimize in this model is
the makespan, defined as the time spent from the moment when the first task
begins execution to the moment when the last task is completed [13].

The following formulation presents the mathematical model for the HCSP
aimed at minimizing the makespan:

– given an HC system composed of a set of machines P = {m1, . . . ,mM}
(dimension M), and a collection of tasks T = {t1, . . . , tN} (dimension N) to
be executed on the system,

– let there be an execution time function ET : T ×P → R+, where ET (ti,mj)
is the time required to execute the task ti in the machine mj ,

– the goal of the HCSP is to find an assignment of tasks to machines (a function
f : TN → PM) which minimizes the makespan, defined in Equation 1.

max
mj∈P

∑
ti∈T :

f(ti)=mj

ET (ti,mj) (1)

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 82 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

In the previous HCSP formulation all tasks can be independently executed,
disregarding the execution order. This kind of applications frequently appears
in many lines of scientific research, specially in Single-Program Multiple-Data
applications used for multimedia processing, data mining, parallel domain de-
composition of numerical models for physical phenomena, etc. The independent
tasks model also arises when different users submit their (obviously indepen-
dent) tasks to execute in grid computing and volunteer-based computing infras-
tructures -such as TeraGrid, WLCG, Berkeley’s BOINC, Xgrid, etc. [2]-, where
non-dependent applications using domain decomposition are very often submit-
ted for execution. Thus, the relevance of the HCSP version faced in this work is
justified due to its significance in realistic distributed HC and grid environments.

2.2 List scheduling heuristics

The class of list scheduling heuristics comprises many deterministic scheduling
methods that work by assigning priorities to tasks based on a particular criterion.
After that, the list of tasks is sorted in decreasing priority and each task is
assigned to a processor, regarding the task priority and the processor availability.
Algorithm 1 presents the generic schema of a list scheduling method.

Algorithm 1 Schema of a list scheduling algorithm.

1: while tasks left to assign do
2: determine the most suitable task according to the chosen criterion
3: for each task to assign, each machine do
4: evaluate criterion (task, machine)
5: end for
6: assign the selected task to the selected machine
7: end while

Since the pioneering work by Ibarra and Kim [10], where the first algorithms
following the generic schema in Algorithm 1 were introduced, many list schedul-
ing techniques have been proposed to provide easy methods for tasks-to-machines
scheduling. This class of methods has also often been employed in hybrid algo-
rithms, with the objective of improving the search of metaheuristic approaches
for the HCSP and related scheduling problems.

The simplest list scheduling heuristics use a single criterion to perform the
tasks-to-machines assignment. Among others, this category includes: Minimum
Execution Time (MET), which considers the tasks sorted in an arbitrary order,
and assigns them to the machine with lower ET for that task, regardless of the
machine availability; Opportunistic Load Balancing (OLB), which considers the
tasks sorted in an arbitrary order, and assigns them to the next machine that
is expected to be available, regardless of the ET for each task on that machine;
and Minimum Completion Time (MCT), which tries to combine the benefits of
OLB and MET by considering the set of tasks sorted in an arbitrary order and
assigning each task to the machine with the minimum ET for that task.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 83 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Trying to overcome the inefficacy of these simple heuristics, other methods
with higher complexity have been proposed, by taking into account more complex
and holistic criteria to perform the task mapping, and then reduce the makespan
values. This work focuses on one of the most effective heuristics in this class:

– MinMin, which greedily picks the task that can be completed the soonest.
The method starts with a set U of all unmapped tasks, calculates the MCT
for each task in U for each machine, and assigns the task with the minimum
overall MCT to the best machine. The mapped task is removed from U ,
and the process is repeated until all tasks are mapped. MinMin improves
upon the MCT heuristic, since it does not consider a single task at a time
but all the unmapped tasks sorted by MCT and by updating the machine
availability for every assignment. This procedure leads to balanced schedules
and also allows finding smaller makespan values than other heuristics, since
more tasks are expected to be assigned to the machines that can complete
them the earliest.

The computational complexity of MinMin heuristic is O(N3), where N is the
number of tasks to schedule. When solving large instances of the HCSP, large
execution times are required to perform the task-to-machine assignment (i.e.
several minutes for a problem instance with 10.000 tasks). In this context, parallel
computing techniques can be applied to reduce the execution times required to
find the schedules.

GPU computing has been used to parallelize many algorithms in diverse re-
search areas. However, to the best of our knowledge, there have been no previous
proposals of applying GPU parallelism to list scheduling heuristics.

3 GPU computing

GPUs were originally designed to exclusively perform the graphic processing
in computers, allowing the Central Process Unit (CPU) to concentrate in the
remaining computations. Nowadays, GPUs have a considerably large comput-
ing power, provided by hundreds of processing units with reasonable fast clock
frequencies. In the last ten years, GPUs have been used as a powerful parallel
hardware architecture to achieve efficiency in the execution of applications.

GPU programming and CUDA. Ten years ago, when GPUs were first used to
perform general-purpose computation, they were programmed using low-level
mechanism such as the interruption services of the BIOS, or by using graphic
APIs such as OpenGL and DirectX [6]. Later, the programs for GPU were devel-
oped in assembly language for each card model, and they had very limited porta-
bility. So, high-level languages were developed to fully exploit the capabilities of
the GPUs. In 2007, NVIDIA introduced CUDA [15], a software architecture for
managing the GPU as a parallel computing device without requiring to map the
data and the computation into a graphic API.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 84 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

CUDA is based in an extension of the C language, and it is available for
graphic cards GeForce 8 Series and superior. Three software layers are used in
CUDA to communicate with the GPU (see Fig. 1): a low-level hardware driver
that performs the CPU-GPU data communications, a high-level API, and a set of
libraries such as CUBLAS for linear algebra and CUFFT for Fourier transforms.

Fig. 1. CUDA architecture.

For the CUDA programmer, the GPU is a computing device which is able to
execute a large number of threads in parallel. A specific procedure to be executed
many times over different data can be isolated in a GPU-function using many
execution threads. The function is compiled using a specific set of instructions
and the resulting program (named kernel) is loaded in the GPU. The GPU has
its own DRAM, and the data are copied from the DRAM of the GPU to the
RAM of the host (and viceversa) using optimized calls to the CUDA API.

The CUDA architecture is built around a scalable array of multiprocessors,
each one of them having eight scalar processors, one multithreading unit, and a
shared memory chip. The multiprocessors are able to create, manage, and exe-
cute parallel threads, with reduced overhead. The threads are grouped in blocks
(with up to 512 threads), which are executed in a single multiprocessor, and the
blocks are grouped in grids. When a CUDA program calls a grid to be executed
in the GPU, each one of the blocks in the grid is numbered and distributed to
an available multiprocessor. When a multiprocessor receives a block to execute,
it splits the threads in warps, a set of 32 consecutive threads. Each warp exe-
cutes a single instruction at a time, so the best efficiency is achieved when the
32 threads in the warp executes the same instruction. Each time that a block
finishes its execution, a new block is assigned to the available multiprocessor.

The threads access the data using three memory spaces: a shared memory
used by the threads in the block; the local memory of the thread; and the global
memory of the GPU. Minimizing the access to the slower memory spaces (the
local memory of the thread and the global memory of the GPU) is a very im-
portant feature to achieve efficiency. On the other hand, the shared memory is
placed within the GPU chip, thus it provides a faster way to store the data.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 85 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

4 MinMin implementations on GPU

The GPU architecture is better suited to the Single Instruction Multiple Data
execution model for parallel programs. Thus, GPUs provide an ideal platform
for executing parallel programs based on algorithms that use the domain de-
composition strategy, especially when the algorithms execute the same set of
instructions for each element of the domain.

The generic schema for a list scheduling heuristic presented in Algorithm 1
applies the following strategy: for each unassigneed task the criterial are evalu-
ated on all machines and the task that best meets the criteria is selected and as-
signed to the machine which generates the minimum MCT. Clearly, this schema
is an ideal case for applying a task-based or machine-based domain decomposi-
tion to generate parallel versions of the heuristics.

The four MinMin implementations on GPU designed in this work are based
on the same generic parallel strategy. For each unassigned task, the evaluation
of the criteria for all machines is performed in parallel on the GPU, building
a vector that stores the identifier of the task, the best value obtained for the
criteria, and the correspondent machine to get that value. The indicators in
the vector are then processed in the reduction phase to obtain the best value
that meets the criteria, and then the best pair (task, machine) is assigned. It
is worth noting that the processing of the indicators to obtain the optimum
value in each step is also performed using the GPU. A graphical summary of the
generic parallel strategy applied in the parallel MinMin algorithms proposed in
this article is presented in Fig. 2.

Fig. 2. Generic parallel strategy for MinMin on GPU.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 86 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Four variants of the proposed MinMin implementation in GPU were designed:

1. Parallel MinMin using one GPU (MinMin-1GPU), which executes on a sin-
gle GPU, applying the aforementioned generic procedure;

2. Parallel MinMin in four GPUs with domain decomposition using pthreads
(MinMin-4GPU-PT), which applies a master-slave multithreading program-
ming approach implemented with posix threads (pthreads) that executes the
same algorithm on four GPUs independently. The employed domain parti-
tion strategy splits the domain (i.e. the set of tasks) into N equally sized
parts (being N the number of GPUs used, four in our case), so that each
task belongs to only one subset. Thus, each GPU performs the MinMin al-
gorithm on a subset of the tasks input data on all machines, and a master
process consolidate the results after each GPU finishes its task;

3. Parallel MinMin in four GPUs with domain decomposition using OpenMP
(MinMin-4GPU-OMP), which applies the same master-slave strategy than
the previous variant, but the multithreading programming is implemented
using OpenMP. The only difference between this implementation and the
previous variant lies in how the threads are handled, in this case they are
automatically managed and synchronized using OpenMP directives included
in the implementation. The code for loading input data, dumping the re-
sulting data, performing the domain partition, and implementing the GPU
kernel are identical to the one used in MinMin-4GPU-PT;

4. Parallel synchronous MinMin in four GPUs and CPU (MinMin-4GPU-
sync), which also applies a domain decomposition but it follows an hybrid
approach. In each iteration, each GPU performs a single step of the MinMin
algorithm, then a master process running in CPU assesses the result com-
puted by each GPU and select the one that best meets the proposed criteria
(i.e. MCT minimization), and finally the information of the selected assign-
ment is updated in each GPU. This variant applies a multitheading approach
implemented using pthreads to manage and synchronize the threads.

Figure 3 describes the parallel strategy used in the proposed implementa-
tions MinMin-4GPU-PT and MinMin-4GPU-OMP, where the CPU threads are
defined and handled by using pthreads and OpenMP, respectively. Figure 4 de-
scribes the parallel strategy used in the synchronous implementation MinMin-
4GPU-sync.

A specific data representation was used to accelerate the execution of the
sequential implementation of the MinMin heuristic, in order to perform a fair
comparison with the execution times of the GPU implementations. The sequen-
tial implementation use a data matrix where each row represents a task and
each column represents a machine. Thus, when performing the processing for
tasks (rows), the entries are loaded to the cache of the processing core, allowing
a faster way to access the data.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 87 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

m
a

c
h

in
e

s

tasks

m
a

c
h

in
e

s

tasks / 4

result
vector

tasks

GPU

result
vector

GPU threads

m
a

c
h

in
e

s

tasks / 4

result
vector

tasks / 4

Input data

Domain decomposition

Execute on GPU

Consolidate the results

CPU thread CPU thread CPU thread CPU thread

m
a

c
h

in
e

s

tasks / 4

m
a

c
h

in
e

s

tasks / 4

m
a

c
h

in
e

s

tasks / 4

GPU

result
vector

GPU threads

m
a

c
h

in
e

s

tasks / 4

GPU

result
vector

GPU threads

m
a

c
h

in
e

s

tasks / 4

GPU

result
vector

GPU threads

m
a

c
h

in
e

s

tasks / 4

result
vector

tasks / 4

result
vector

tasks / 4

result
vector

tasks / 4

Fig. 3. Parallel strategy used in MinMin-4GPU-PT and MinMin-4GPU-OMP.

For parallel algorithms executing on GPU, loading the data matrix in the
same way reduces the computational efficiency. Adjacent threads would access
to the data stored in contiguous rows, but these are not stored contiguously,
thus they cannot be stored in shared memory. When the data matrix is loaded
so that each column represent a task and each row represent a machine, two
adjacent threads in GPU access to the data stored in contiguous columns. These
data are stored in contiguous memory locations, so they can be loaded in the
shared memory, allowing to perform a faster data access for each thread, and
therefore improving the execution of the parallel algorithm on GPU.

Preliminary experiments were also performed using a domain decomposition
strategy that divides the data by machines rather than by tasks, but this option
was finally discarded due to scalability issues as the problem size increases.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 88 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

m
a
c
h
in

e
s

tasks

result
vector

tasks

Input data

Domain decomposition

YES

NO all tasks
assigned?

Consolidate the results

best result
for step

GPU

result
vector

GPU threads

m
a
c
h

in
e

s

tasks / 4

result for
single step

GPU

result
vector

GPU threads

m
a
c
h
in

e
s

tasks / 4

result for
single step

GPU

result
vector

GPU threads

m
a
c
h
in

e
s

tasks / 4

result for
single step

result for
single step

CPU threads

m
a
c
h
in

e
s

tasks / 4

GPU

result
vector

GPU threads

m
a
c
h
in

e
s

tasks / 4

result for
single step

Execute on GPU

next step

synchronization

Fig. 4. Parallel strategy used in MinMin-4GPU-sync.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 89 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

5 Experimental analysis

This section presents the experimental evaluation of the proposed MinMin im-
plementations on GPU.

5.1 HCSP scenarios

No standardized benchmarks or test suites for the HCSP have been proposed
in the related literature [17]. Researchers have often used the suite of twelve
instances proposed by Braun et al. [3], following the expected time to compute
(ETC) performance estimation model by Ali et al. [1].

ETC takes into account three key properties: machine heterogeneity, task
heterogeneity, and consistency. Machine heterogeneity evaluates the variation of
execution times for a given task across the HC resources, while task heterogene-
ity represents the variation of the tasks execution times for a given machine.
Regarding the consistency property, in a consistent scenario, whenever a given
machine mj executes any task ti faster than other machine mk, then machine mj

executes all tasks faster than machine mk. In an inconsistent scenario a given
machine mj may be faster than machine mk when executing some tasks and
slower for others. Finally, a semi-consistent scenario models those inconsistent
systems that include a consistent subsystem.

For the purpose of studying the efficiency of the GPU implementations as
the problem instances grow, the experimental analysis consider a test suite of
large-dimension HCSP instances, randomly generated to test the scalability of
the proposed methods. This test suite was designed following the methodology
by Ali et al. [1]. The set includes the 96 medium-sized HCSP instances with
dimension (tasks×machines) 1024×32, 2048×64, 4096×128 and 8192×256 pre-
viously solved using an evolutionary algorithm [14], and new large dimension
HCSP instances with dimensions 16384×512, 32768×1024, 65536×2048, and
131072×4096, specifically created to evaluate the GPU implementations pre-
sented in this work.

These dimensions are significanlty larger than those of the popular bench-
mark by Braun et al. [3] and they better model present distributed HC and grid
systems. The problem instances and the generator program are publicly available
to download at http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP.

5.2 Development and execution platform

The parallel MinMin heuristics were implemented in C, using the standard
stdlib library. The experimental analysis was performed on a Dell PowerEdge
(QuadCore Xeon E5530 at 2.4 GHz, 48 GB RAM, 8 MB cache), with CentOS
Linux 5.4 and a NVidia Tesla C1060 GPU (240 cores at 1.33 GHz, 4GB RAM)
from the Cluster FING infrastructure, Facultad de Ingenieŕıa, Universidad de la
República, Uruguay (cluster website http://www.fing.edu.uy/cluster).

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 90 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

5.3 Experimental results

This section reports the results obtained when applying the parallel GPU im-
plementations of the MinMin list scheduling heuristic for the HSCP instances
tackled in this article.

In the experimental evaluation, we study two specific aspects of the proposed
parallel MinMin implementations on GPU:

– Solution quality : The proposed parallel implementations modify the algo-
rithmic behavior of the MinMin heuristic, so the makespan results obtained
with the GPU implementations are not the same than those obtained with
the sequential versions for the studied HCSP instances. We evaluate the
relative gap with respect to the traditional (sequential) MinMin for each
method, as defined by Eq. 2, where makespanPAR and makespanSEQ are
the makespan values computed using the parallel and the sequential MinMin
implementation, respectively.

GAP =
makespanPAR −makespanSEQ

makespanSEQ
(2)

– Execution times and speedup: We analyze the wall-clock execution times and
the speedup for each parallel MinMin implementation with respect to the
sequential one. The speedup metric evaluates how much faster a parallel
algorithm is than its corresponding sequential version. It is computed as the
ratio of the execution times of the sequential algorithm (TS) and the parallel
version executed onm computing elements (Tm) (Equation 3). The ideal case
for a parallel algorithm is to achieve linear speedup (Sm = m), but the most
common situation is to achieve sublinear speedup (Sm < m), mainly due to
the times required to communicate and synchronize the parallel processes.
However, when using GPU infrastructures very large speedup values have
been often reported.

Sm =
TS

Tm
(3)

Table 1 reports the average execution times (in seconds), the average GAP val-
ues and the average speedup for each of the four parallel MinMin implementa-
tions on GPU studied, and a comparison with the sequential implementation in
CPU. The results in Table 1 correspond to the average values for all the HCSP
instances solved for each problem dimension studied, and the comparison is per-
formed considering the optimized sequential algorithms using the specialized
data representation described in Section 4.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 91 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

dimension
MinMin MinMin-1GPU MinMin-4GPU-PT

t(s) t(s) GAP speedup t(s) GAP speedup

1024×32 0.07 0.23 0.10% 0.31 0.88 20.00% 0.08

2048×64 0.39 0.37 -0.16% 1.06 0.95 28.33% 0.41

4096×128 2.25 1.02 0.13% 2.20 1.19 20.66% 1.89

8192×256 15.67 4.77 0.04% 3.28 2.03 19.90% 7.73

16384×512 119.74 24.83 -0.46% 4.82 6.08 20.45% 19.69

32768×1023 848.62 176.85 -0.11% 4.80 22.77 16.33% 37.28

65536×2048 6352.94 1049.34 0.11% 6.05 110.44 20.14% 57.52

131072×4096 49764.76 7253.88 0.04% 6.86 690.67 17.64% 72.03

dimension
MinMin MinMin-4GPU-OMP MinMin-4GPU-sync

t(s) t(s) GAP speedup t(s) GAP speedup

1024×32 0.07 0.83 20.00% 0.09 1.03 -0.07% 0.07

2048×64 0.39 0.89 28.33% 0.44 1.26 0.07% 0.31

4096×128 2.25 1.01 20.66% 2.21 1.95 -0.17% 1.15

8192×256 15.67 1.82 19.90% 8.62 4.16 0.05% 3.77

16384×512 119.74 5.84 20.45% 20.51 14.83 -0.28% 8.07

32768×1023 848.62 22.79 16.33% 37.23 60.16 -0.16% 14.11

65536×2048 6352.94 108.93 20.14% 58.32 292.75 -0.16% 21.70

131072×4096 49764.76 690.85 17.64% 72.05 2236.72 0.40% 22.25

Table 1. Experimental results for the GPU implementations.

The results in Table 1 show that significant improvements on the execution
times of MinMin are obtained when using the GPU implementations for problem
instances with more than 8.000 tasks. When solving the low-dimension problem
instances, the GPU implementations were unable to outperform the execution
times of the sequential MinMin, mainly due to the overhead introduced by the
threads creation and management, and the use of the GPU memory. However,
when solving larger problem instances that model realistic large grid scenarios,
significant improvements in the execution times are achieved, specially for the
problem instances with dimension 65536×2048 and 131072×4096.

Regarding the computational efficiency, Fig. 5 summarizes the speedup values
for the GPU implementations for each problem dimension faced.

The evolution of the speedup values in Fig. 5 indicates that the four GPU
implementations obtained small accelerations for the HCSP instances with di-
mension less than 8192×256. However, as the dimension of the problem in-
stances grow (16384×512, 32768×1024, 65536×2048, and 131072×4096), rea-
sonable speedup values are obtained for the parallel implementations. The best
speedup values were computed for the two largest problem dimensions, with a
maximum of 72.05 for the parallel asynchronous MinMin implementation on
four GPUs using OpenMP threads.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 92 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Fig. 5. Speedup for the MinMin GPU implementations.

The four studied MinMin variants in GPU provide different trade-off values
between the quality of solutions and execution time required. The asynchronous
implementations applying domain decomposition using four GPUs (MinMin-
4GPU-PT and MinMin-4GPU-OMP) have the largest speedup values, but the
results quality are from 16% to 20% worst than the sequential MinMin imple-
mentation. Despite the aforementioned reductions in the solution quality, these
methods are able to compute the solutions in reduced execution times (i.e. about
10 minutes in the larges scenario studied, when scheduling 131072 tasks on 4096
machines), thus they can be useful to rapidly solve large scheduling scenarios.
On the other hand, the parallel synchronous version of MinMin using four GPUs
computed exactly the same solution than the sequential MinMin, but it improves
the execution time in a factor of up to 22.25× for the largest instances tackled
in this work.

The previously commented results indicate that the proposed parallel im-
plementation of the MinMin list scheduling heuristic in GPU are accurate and
efficient methods for scheduling in large HC and grid infrastructures. All parallel
variants provides promising reductions in the execution times when solving large
instances of the scheduling problem.

6 Conclusions and future work

This article studied the development of parallel implementations in GPU for
a weel-known effective list scheduling heuristic algorithm, namely MinMin, for
scheduling in heterogeneous computing environments.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 93 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

The four proposed algorithms were developed using CUDA, following a sim-
ple domain decomposition approach that allows scaling up to solve very large di-
mension problem instances. The experimental evaluation solved HCSP instances
with up to 131072 tasks and 4096 machines, a dimension far more larger than
the previously tackled in the related literature.

The experimental results demonstrated that the parallel implementations of
MinMin on GPU provide significant accelerations over the time required by the
sequential implementations when solving large instances of the HCSP. On the
one hand, the speedup values raised up to a maximum of 72.05 for the parallel
asynchronous MinMin implementation on four GPUs using OpenMP threads.
On the other hand, the parallel synchronous version of MinMin using four GPUs
computed exactly the same solution than the sequential MinMin, but improving
the execution time in a factor of up to 22.25× for the largest instances tackled
in this work.

The previously commented results demonstrate that the parallel MinMin
implementations in GPU introduced in this article are accurate and efficient
schedulers for HC systems, which allow tackling large scheduling scenarios in
reasonable execution times.

The main line for future work is related with improving the proposed GPU
implementations, mainly by studying the management of the memory accessed
by the threads. In this way, the computational efficiency of the heuristics on
GPU can be further improved, allowing to develop even more efficient parallel
implementations. Another line for future works is used this implementations for
complement the efficient heuristic local search methods implemented on GPU.
We are working on these topics right now.

References

1. S. Ali, H. Siegel, M. Maheswaran, S. Ali, and D. Hensgen. Task execution time
modeling for heterogeneous computing systems. In Proc. of the 9th Heterogeneous
Computing Workshop, page 185, Washington, USA, 2000.

2. F. Berman, G. Fox, and A. Hey. Grid Computing: Making the Global Infrastructure
a Reality. John Wiley & Sons, Inc., New York, NY, USA, 2003.

3. T. Braun, H. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys, B. Yao, D. Hensgen, and R. Freund. A comparison of eleven static
heuristics for mapping a class of independent tasks onto heterogeneous distributed
computing systems. J. Parallel Distrib. Comput., 61(6):810–837, 2001.

4. H. El-Rewini, T. Lewis, and H. Ali. Task scheduling in parallel and distributed
systems. Prentice-Hall, Inc., 1994.

5. M. Eshaghian. Heterogeneous Computing. Artech House, 1996.

6. R. Fernando, editor. GPU gems. Addision-Wesley, Boston, 2004.

7. I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing Infras-
tructure. Morgan Kaufmann Publishers, 1998.

8. R. Freund, V. Sunderam, A. Gottlieb, K. Hwang, and S. Sahni. Special issue on
heterogeneous processing. J. Parallel Distrib. Comput., 21(3), 1994.

9. M. Garey and D. Johnson. Computers and intractability. Freeman, 1979.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 94 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

10. O. Ibarra and C. Kim. Heuristic algorithms for scheduling independent tasks on
nonidentical processors. Journal of the ACM, 24(2):280–289, 1977.

11. D. Kirk and W. Hwu. Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann, 2010.

12. Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471, 1999.

13. J. Leung, L. Kelly, and J. Anderson. Handbook of Scheduling: Algorithms, Models,
and Performance Analysis. CRC Press, Inc., 2004.

14. S. Nesmachnow. A cellular multiobjective evolutionary algorithm for efficient het-
erogeneous computing scheduling. In EVOLVE 2011, A bridge between Probability,
Set Oriented Numerics and Evolutionary Computation, 2011.

15. nVidia. CUDA website. Available online http://www.nvidia.com/object/cuda_

home.html, 2010. Accessed on July 2011.
16. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips. GPU

computing. Proceedings of the IEEE, 96(5):879–899, May 2008.
17. M. Theys, T. Braun, H. Siegel, A. Maciejewski, and Y. Kwok. Mapping tasks onto

distributed heterogeneous computing systems using a genetic algorithm approach.
In Solutions to parallel and distributed computing problems, pages 135–178, New
York, USA, 2001. Wiley.

18. T. Velte, A. Velte, and R. Elsenpeter. Cloud Computing, A Practical Approach.
McGraw-Hill, Inc., New York, NY, USA, 2010.

HPCLatAm 2012, pp. 81-95 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 95 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

A parallel online GPU scheduler for large

heterogeneous computing systems

Santiago Iturriaga1, Sergio Nesmachnow1, Francisco Luna2, and Enrique Alba2

1 Universidad de la República, Uruguay
{siturria,sergion}@fing.edu.uy
2 Universidad de Málaga, Spain
{flv,eat}@lcc.uma.es

Abstract. This work presents a parallel implementation on GPU for
a stochastic local search method to efficiently solve the task schedul-
ing problem in heterogeneous computing environments. The research
community has been searching for accurate schedulers for heterogeneous
computing systems, able to run in reduced times. The parallel stochas-
tic search proposed in this work is based on simple operators in order to
keep the computational complexity as low as possible, thus allowing large
scheduling instances to be efficiently tackled. The experimental analysis
demonstrates that the parallel stochastic local search method on GPU
is able to compute accurate suboptimal schedules in significantly shorter
execution times than state-of-the-art schedulers.

Keywords: GPU computing, heterogeneous computing, scheduling.

1 Introduction

Scheduling tasks in current heterogeneous computing (HC) systems challenges
researchers to the problem of assigning dozens of thousands of tasks in very short
times that should be limited to a few seconds. Indeed, HC systems are becoming
larger and larger during the last fifteen years, mainly due to the fast increase
of computing power and the rapid development of high-speed networking pro-
tocols, but also to the demand of the scientific community that has to address
increasingly large problems that require an enormous computing power [7]. As-
signing and mapping tasks becomes therefore a critical issue since finding an
accurate schedule significantly impacts in both the resource utilization costs and
the quality of service (QoS) perceived by the user.

Scheduling problems have been widely studied in operational research [4,12],
but most of the classical approaches have faced the task scheduling in homo-
geneous environments. The ultimate goal of a scheduling problem is to provide
an assignment of tasks to resources so that some efficiency criteria is satisfied,
usually related to the total execution time for a bunch of tasks (makespan), but
frequently also considering other metrics such as the resource utilization and/or
the QoS.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 96 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

The Heterogeneous Computing Scheduling Problem (HCSP), in which the re-
sources are different among them, has become important due to the populariza-
tion of distributed computing and the growing use of heterogeneous clusters [5,8].
Even the traditional homogeneous scheduling problems are NP-hard [9], so het-
erogeneity makes this problem even harder, thus allowing exact methods being
only useful for solving instances of reduced size.

When dealing with large problem instances, as demanded by the size of cur-
rent HC systems, heuristic and metaheuristic methods [14,18,19] are the only
viable options in practice to compute efficient schedules in reasonable execution
times. In this context, the faster the scheduler, the quicker the HC system can al-
locate new tasks and, as a consequence, the better its utilization degree (and the
corresponding income). However, it is very hard, particularly for metaheuristics,
to meet the wall-clock time constraint imposed in current heterogeneous cluster
computing infrastructures and in grid computing systems. In fact, scheduling
dozens of thousands of tasks is even slow for basic low level heuristic methods,
which are usually much faster than metaheuristics. This work is focussed on these
latter heuristic methods and the use of parallelism to reduce their computational
times. The actual scientific contribution therefore lies in the parallelization of a
stochastic local search (rPALS [15]) on GPU (Graphic Processing Units) cards.
It has been called gPALS. Its main goal is to profit from the computing power of
these newly available massively parallel platforms in order to address very large
HCSP instances. Indeed, the testbed used is composed of problem instances that
range from 8096 to 32768 tasks, and 256 to 1024 machines, respectively. Aver-
aging over 60 different instances, the results have shown that, compared to the
state-of-the-art deterministic MinMin heuristic [11], gPALS is able to reach task
schedules with a 5% lower makespan more than 11 times faster.

The rest of the manuscript is organized as follows. The next section presents
the HCSP formulation and briefly describes the list scheduling heuristics used
for initializing the proposed gPALS and in the results comparison. Section 3
introduces the main concepts about GPU computing. The details about the GPU
implementation for the stochastic local search method proposed to efficiently
solve the HCSP are presented in Section 4. The experimental analysis is described
in Section 5, studying the numerical efficacy and the computational efficiency
of the proposed method in a number of large-sized HCSP scenarios. Finally,
Section 6 presents the main conclusions of the research and formulates the main
lines for future work.

2 Heterogeneous computing scheduling

This section introduces the HCSP formulation and presents some considerations
about the execution time estimation model used in the problem instances to
solve. In addition, the classic deterministic heuristics applied for initializing the
proposed gPALS method and the one used as a baseline to compare the gPALS
results are described.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 97 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

2.1 Formal definition

An HC system is a computational platform composed of many computational
resources, also called processors or machines. The scheduling problem in HC
considers a set of tasks with variable computing demands to be executed on
the system. A task is the atomic unit of workload, so it cannot be divided
into smaller chunks, nor interrupted after it is assigned to a machine (i.e., the
scheduling problem follows a non-preemptive model). The execution times of
each task vary from one machine to another, so there will be competition among
tasks for using those machines able to execute them in the shortest time.

The most usual objective to minimize in scheduling is the makespan, defined
as the time spent from the moment when the first task begins its execution to
the moment when the last task is completed. However, many other objectives
have been considered in scheduling problems [12].

The following formulation presents the mathematical model for the HCSP:

– given an HC system composed of a set of machines M = {m1,m2, . . . ,mL}
and a collection of tasks T = {t1, t2, . . . , tN} to be executed on the system,

– let there be an execution time function ET : T×M → R+, where ET (ti,mj)
is the time required to execute the task ti in the machine mj ,

– the goal of the HCSP is to find an assignment of tasks to machines (a function
f : TN → ML) which minimizes the makespan metric, defined in Eq. 1.

max
mj∈M

∑

ti∈T :

f(ti)=mj

ET (ti,mj) . (1)

Using the 3-field notation from Graham et al. [10], the HCSP is denoted
Rm|1|Cmax.

2.2 Execution time estimation model

In this work, we adopted the expected time to compute (ETC) performance es-
timation model by Ali et al. [2], which has been widely used by the research
community when facing the HCSP. ETC provides an estimation for the execu-
tion time of a collection of tasks in an HC system, taking into account three key
properties: machine heterogeneity, task heterogeneity, and consistency.

Machine heterogeneity evaluates the variation of execution times for a given
task across the HC resources. A system with similar computing resources has low
machine heterogeneity, while high machine heterogeneity represents HC systems
with computing resources of different power. Task heterogeneity represents the
variation of the tasks execution times for a given machine. In a high task het-
erogeneity scenario, different types of applications are submitted to execution,
from simple programs to complex tasks which require large CPU times to be
performed. On the other hand, low task heterogeneity models those scenarios
when the tasks computational requirements, and thus their execution times, are
similar for a given machine.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 98 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

The ETC model considers a second classification. In a consistent ETC sce-
nario, whenever a given machine mj executes any task ti faster than other ma-
chine mk, then machine mj executes all tasks faster than machine mk. An incon-
sistent ETC scenario lacks of structure among the computing demands of tasks
and the computing power of machines, so a given machine mj may be faster
than another machine mk when executing some tasks, and slower for others.
In addition, a third category of semi-consistent ETC scenarios is included, to
model those inconsistent systems that include a consistent subsystem.

2.3 List scheduling heuristics

Several deterministic heuristics have been proposed for HC scheduling. One of
the most used class of such methods is list scheduling heuristics [11]. List schedul-
ing methods work by assigning priorities to tasks based on a particular criteria,
sorting the list of tasks in decreasing priority, and assigning each task to a pro-
cessor, regarding both the task priority and the processor availability.

Variations of two well-known list scheduling heuristics have been used in this
work to generate the initial solution for the gPALS method:

– Minimum Completion Time (MCT) considers the set of tasks sorted in an
arbitrary order. Then, it assigns each task to the machine with the minimum
ET for that task.

– MinMin greedily picks the task that can be completed the soonest. The
method starts with a set U of all unmapped tasks, calculates the MCT for
each task in U for each machine, and assigns the task with the minimum
overall MCT to the machine that executes it faster. The mapped task is
removed from U , and the process is repeated until all tasks are mapped.

The MinMin heuristic provides an excellent packing of tasks for HC environ-
ments with high level of heterogeneity of both tasks and machines, thus comput-
ing better makespan values than other well-known list scheduling heuristics [11].
For this reason, the MinMin results are used in this work as a reference baseline
for comparing the results computed with the proposed local search algorithm.

3 GPU computing

GPUs were originally designed to exclusively perform the graphic processing
in computers, allowing the Central Process Unit (CPU) to concentrate on the
remaining computations. Nowadays, GPUs have a considerably large comput-
ing power, provided by hundreds of processing units with reasonable fast clock
frequencies. In the last ten years, GPUs have been used as a powerful parallel
hardware architecture to achieve efficiency in the execution of applications.

GPU programming and CUDA. The first GPUs used for general-purpose com-
puting were programmed using low-level mechanisms such as the interruption
services of the BIOS, or by using graphic APIs such as OpenGL and DirectX [6].

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 99 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Later, the programs for GPU were developed in assembly language for each card
model, and they had very limited portability. So, high-level languages were devel-
oped to fully exploit the capabilities of the GPUs. In 2007, NVIDIA introduced
CUDA (Compute Unified Device Architecture) [16], a software architecture for
managing the GPU as a parallel computing device without requiring to map the
data and the computation into a graphic API.

CUDA extends the C language, and it is available since cards of the GeForce
8 Series onwards. Three software layers are used in CUDA to communicate with
the GPU (see Fig. 1): a low-level hardware driver that performs the CPU-GPU
data communications, a high-level API, and a set of libraries such as CUBLAS
for linear algebra and CUFFT for Fourier transforms calculation.

Fig. 1. CUDA architecture.

For the CUDA programmer, the GPU is a computing device which is able to
execute a large number of threads in parallel. A specific procedure to be executed
many times over different data can be isolated in a GPU-function using many
execution threads. The function is compiled using a specific set of instructions
and the resulting program (named kernel) is loaded in the GPU. The GPU has
its own DRAM, and the data are copied from the DRAM of the GPU to the
RAM of the host (and viceversa) using optimized calls of the CUDA API.

The CUDA architecture is built around a scalable array of multiprocessors,
each one having eight scalar processors, one multithreading unit, and a shared
memory chip. The multiprocessors are able to create, manage, and execute par-
allel threads, with reduced overhead. The threads are grouped into blocks (with
up to 512 threads), which are executed in a single multiprocessor of the graphic
card, and the blocks are grouped in grids. Each time that a CUDA program calls
a grid to be executed in the GPU, each of the blocks in the grid is numbered
and distributed to an available multiprocessor. When a multiprocessor receives
a block to be executed, it splits the threads into warps, a set of 32 consecutive
threads. Each warp executes a single instruction at a time, so the best efficiency
is achieved when the 32 threads in the warp executes the same instruction. Oth-
erwise, the warp serializes the threads. When a block finishes its execution, a
new block is assigned to the available multiprocessor.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 100 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

The threads are able to access the data using three memory spaces: a shared
memory which can be used by the threads in the block; the local memory of the
thread; and the global memory of the GPU. Minimizing the access to the slower
memories (the local memory of the thread and the global memory of the GPU)
is a very important feature to achieve high efficiency in GPU computing. On the
other hand, the shared memory is placed within the GPU chip, thus providing
a faster way to store data, such as the registers of each multiprocessor.

4 gPALS: a GPU implementation of a stochastic local

search scheduler

This section describes both rPALS, the base algorithm that has been parallelized,
and gPALS, its deployment on GPU cards.

4.1 rPALS

The stochastic local search algorithm proposed in this work to efficiently solve the
HCSP is based on PALS [1]. The original PALS method is a deterministic local
search algorithm originally proposed for the DNA fragment assembly problem.

PALS works on a single solution s, which is iteratively modified by applying
a series of movements aimed at locally improving their objective function value
f(s). The movement operator performs a modification on two positions i and j

in the solution s, while the key step is the calculation of the objective function
variation ∆f(i,j) when applying a certain movement. When the calculation of
∆f(i,j) can be performed without significantly increasing the computational cost
of the algorithm, PALS provides a very efficient search pattern for combinatorial
optimization problems.

In this work, a randomized variant of PALS (rPALS), has been used for the
HCSP [15]. The aim of the algorithm is to reach accurate schedules in very
short times. To do so, from a initial solution computed by a fast scheduling
heuristic, rPALS iteratively applies two basic operations that either swap or move
randomly chosen tasks allocated to randomly chosen machines, thus avoiding
exploring all the possible neighbors. The algorithm has been designed under the
paradigm of simplicity; by using simple search operators, the resulting rPALS
method is able to scale up in order to face realistic medium-sized HCSP instances.

4.2 gPALS

The emergence of general purpose GPU computing has opened new research
lines specially promising in this field of scheduling and planning. Indeed, this
new technology will help to address more and more larger problem instances (up
to 32768 tasks and 1024 machines in this work) in reasonable wall-clock times
which are closer to the actual HC infrastructures. The key issue is to fully exploit
the massively parallelism of the GPU cards. This is precisely the main design
goal of gPALS, the GPU version of rPALS.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 101 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Algorithm 1 presents the pseudo-code of the gPALS algorithm for the HCSP.
The method starts by generating an initial schedule s using a list scheduling
heuristic (e.g. MCT, pMin-Min/DD, etc.). Then, a search is performed in the
GPU in order to find candidate movements to improve the schedule, this search
is detailed in Algorithm 2. The GPU search returns the best GPU BLOCKS move-
ments found. The best movement is always applied, the remaining movements
are applied in random order as long as they do not modify a machine already
modified by a previous movement, otherwise the movement is discarded. Once
all the movements are either applied or discarded, the stopping criterion is tested
and the algorithm either ends or performs a new iteration.

The movement search on the GPU is organized in blocks; there are GPU BLOCKS

blocks, each block having GPU THREADS threads. Each block performs an indepen-
dent local search in a randomly selected neighbourhood, with the threads in the
block collaborating with each other to find the best movement in the assigned
neighbourhood. Algorithm 2 presents the movement search performed on the
GPU. First, each block deterministically selects a movement type (i.e. MOVE or
SWAP). Then each thread in the block randomly selects the source and destination
elements to modify. Each thread evaluates its assigned movement and computes
a score for it. After each thread in the block evaluated its assigned movement,
the best movement (i.e. the one with the lower score) is selected and returned
to Algorithm 1 as the best movement found in the block.

Algorithm 1 gPALS for the HSCP

1: s← initialize using a list scheduling heuristic
2: while STOPPING CONDITION is not met do
3: m← Parallel execution of the movement search kernel in s with 128 blocks with

256 threads each {A total of 32768 threads are launched}
4: s← Apply the best movement from m

5: s← Apply the rest of the movements in m in random order
6: end while
7: return s

As it can be seen, gPALS requires an initial solution which is iteratively
improved (line 1 in Algorithm 1). For this initial solution to be generated, any
classical list heuristic could be used in order to provide gPALS with a rather
high quality task schedule. Two different versions of gPALS have been devised
depending on this heuristic:

– gPALSMCT : it uses MCT for generating the initial task schedule.
– gPALSMMDD: the pMin-Min/DD (or parallelMin-Min with domain decom-

position) heuristic is adopted. It is a multithreading version of the Min-Min
algorithm, which performs a task domain decomposition and does not require
any synchronization mechanism (see [13] for the details).

A diagram of the parallel model used in gPALS is presented in Fig. 2.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 102 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Algorithm 2 Movement search kernel for the GPU.

1: shared M ← ∅ {shared across all threads in the block}
2: s← Current schedule
3: movement ← Choose which movement to perform
4: if movement is TASK SWAP then
5: tx, ty ← Choose two random tasks (tx 6= ty)
6: m← Swap tx with ty

7: else if movement is TASK MOVE then
8: tx ← Choose a random task
9: my ← Choose a random machine
10: m← Move tx to my

11: end if
12: if makespan of the schedule s increases after the movement m then
13: score←∞
14: else
15: ctx ← Compute time of the machine mx to which tx is assigned
16: ct′x ← Compute time of the machine mx after applying the movement
17: cty ← Compute time of the machine my (when swapping, the machine to which

ty is assigned)
18: ct′y ← Compute time of the machine my after applying the movement
19: score← (ct′x −max(ctx, cty)) + (ct′y −max(ctx, cty))
20: end if
21: M ←M ∪m

22: synchronize() {threads in the block}

23: mbest ← Parallel reduce M to find best movement in the block
24: return mbest

Fig. 2. Parallel model applied in gPALS.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 103 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

5 Experimental analysis

This section introduces the set of HCSP instances and the computational plat-
form used to evaluate the proposed LS algorithm. After that, the experiments
conducted to determine the best values for the randomized PALS parameters are
presented. Finally, the results obtained when solving realistic HCSP instances
are analyzed in detail.

5.1 HCSP instances

To evaluate the proposed gPALS method, a specific set of 60 HCSP instances
was used. These instances were randomly generated following the range based
methodology proposed by Ali et al. [2], and they were previously employed to
evaluate a cellular genetic algorithm scheduler for HC systems in the work by
Pinel et al. [17].

The HCSP instances solved in this article model realistic large-sized HC in-
frastructures. Three problem dimensions were studied in the experimental anal-
ysis of gPALS: (tasks×machines) 8192×256, 16384×512, and 32768×1024. This
dimensions are far more larger than the ones usually tackled in the related lit-
erature. For each problem dimension considered, 20 instances were used, follow
the parametrization values suggested by Braun et al. [3].

5.2 Development and execution platform

The rPALS algorithm was implemented in C, using the standard stdlib library
and compiled with gcc 4.1.2. The experimental analysis was performed in a Dell
PowerEdge with QuadCore Xeon E5430 processor at 2.66 GHz, 8 GB RAM, and
CentOS Linux (platform website: http://www.fing.edu.uy/cluster).

5.3 Results and discussion

This section is aimed at presenting the experimental results obtained. It has
been structured in two separate subsections so as to analyze, firstly, the quality
of the tasks schedules reached by MinMin, gPALSMCT , and gPALSMMDD in
terms of their makespan and, secondly, the parallel performance of the proposed
approaches, gPALSMCT and gPALSMMDD, with respect to MinMin.

Numerical efficiency. Table 1 reports the makespan reached by MinMin and
the two versions of gPALS for the three set of instances with increasing size.
Before going into details, we want to make clear the experimental conditions.
Whereas MinMin has been let to execute until it schedules all the tasks, i.e.,
until a full solution is built (it is a constructive heuristic), both gPALSMCT

and gPALSMMDD stop when 30 seconds of GPU computation have elapsed (the
loading time of the instance is not considered here). The cells with the best
makespan are marked with a gray background.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 104 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Table 1. Makespan of the three algorithms for 60 HCSP instances, 20 for each dimen-
sion —8192×256, 16384×512, and 32768×1024.

8192×256 16384×512 32768×1024
MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD

1 1845.2 1835.4 1710.4 1934.1 1886.1 1777.0 1996.2 1927.3 1831.3
2 1889.9 1863.2 1740.0 1940.5 1889.9 1781.2 1979.0 1918.0 1824.3
3 1894.3 1831.0 1716.0 1949.0 1895.7 1782.1 1980.7 1919.7 1821.6
4 1890.1 1866.4 1743.0 1922.0 1887.1 1778.4 1982.8 1929.3 1830.6
5 1859.6 1843.7 1724.8 1904.1 1867.7 1757.1 1971.9 1918.5 1818.4
6 1863.4 1829.0 1715.4 1901.7 1885.7 1772.6 1973.4 1912.0 1816.3
7 1897.3 1862.3 1736.9 1945.5 1898.1 1787.6 1991.0 1926.0 1829.0
8 1874.5 1852.6 1738.4 1903.8 1878.6 1768.5 1991.8 1922.5 1822.0
9 1871.5 1853.3 1730.9 1937.3 1894.7 1782.4 1994.8 1929.5 1832.2

10 1865.9 1867.2 1742.5 1935.7 1877.6 1769.9 1997.1 1922.1 1822.9
11 1840.7 1823.8 1711.9 1937.4 1899.2 1786.7 1975.8 1914.7 1816.2
12 1867.3 1836.7 1724.2 1916.2 1871.6 1762.8 1974.2 1912.2 1813.5
13 1895.4 1867.5 1744.6 1911.8 1884.8 1771.6 1978.6 1915.2 1818.6
14 1884.8 1841.8 1725.4 1927.6 1898.7 1784.0 1988.1 1923.3 1824.3
15 1851.0 1828.2 1710.8 1944.4 1901.0 1787.5 1972.1 1915.8 1819.3
16 1846.3 1837.2 1724.1 1939.5 1886.5 1777.9 1979.3 1913.3 1814.2
17 1874.7 1818.1 1707.8 1933.6 1878.4 1764.9 1991.8 1916.7 1814.9
18 1862.8 1856.5 1736.7 1929.5 1887.0 1776.4 1986.8 1922.5 1825.5
19 1892.5 1853.4 1732.7 1910.8 1880.6 1765.6 1975.2 1914.5 1814.2
20 1869.0 1853.8 1731.2 1941.0 1891.6 1781.0 1991.7 1919.9 1819.2

The experimental results in Table 1 clearly point out that gPALSMMDD is
the algorithm that reached the task schedules that most reduces the makespan for
all the instances addressed. This occurs consistently for the three instances sizes,
i.e., 8192×256, 16384×512, and 32768×1024. Averaging over all the instances of
the same size, gPALSMMDD improves the makespan computed by MinMin in
7.72%, 7.91%, and 8.18%, respectively. It is important to note the relevance of
these values, given the experimental conditions. Though slightly, these average
values show that, the larger the instances, the better the improvement, and this
has been achieved by keeping the same computation time, i.e., 30 seconds. That
is, for search spaces very much larger (both the number of tasks and machines
is doubled), our approach is able to improve even more MinMin, which requires
in turn very much longer execution times (see the next section). To a lesser
extent, the same claims hold for gPALSMCT : the average improvements are also
increasing with the instance size, but only 1.37%, 2.13%, and 3.24%, respectively.

In order to better support our claims, Fig. 3 displays the evolution of the
makespan of a typical 8192×256 instance in terms of (a) the iterations and (b)
the execution time of gPALSMCT and gPALSMMDD in a typical execution, re-
spectively. The makespan obtained by Min-Min is also included as a baseline
for the comparison. These subfigures shows a very interesting fact. For gPALS,
the more accurate the initial solution (in this case, that computed by MCT),
the earlier the stagnation in a local minimum. Indeed, it can be seen that pMin-

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 105 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

(a) (b)

Fig. 3. Evolution of the makespan during a typical execution of the three compared
algorithms for a 8192×256 instance with respect to (a) the iterations of gPALS and
(b) its wall-clock time.

(a) (b)

Fig. 4. Evolution of the makespan during a typical execution of the three compared
algorithms for a 16384×512 instance with respect to (a) the iterations of gPALS and
(b) its wall-clock time.

MinDD reaches a task schedule with much higher (worse) makespan, and then
gPALS is able to iteratively move and swap tasks between machines that al-
low the makespan to be continuously reduced up to the iteration 2500. With
respect to Min-Min, gPALSMCT requires around 1000 generations to reach a
lower makespan, whereas gPALSMMDD is around iteration 2000. If we now turn
to analyze the evolution with respect the execution time, the picture changes.
The first remark here is that the two gPALS versions outperform MinMin af-
ter just one single second of computation, clearly showing their suitability for
addressing this large instances of the HCSP problem. The second remark raises
when comparing gPALSMCT and gPALSMMDD: the latter also requires just one
second to reach a more accurate task schedule than the former.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 106 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Figure 4 presents the evolution of makespan values with respect to both the
iterations of gPALS and the execution time, but for a representative 16384×512-
sized instance. All the previous claims hold as well with the only difference in sub-
figure (b), in which now the generation of the initial solution for gPALSMMDD

with the pMin-MinDD heuristic takes longer and delays outperforming both
MinMin and gPALSMCT about one second. The same behavior was detected for
the other HCSP instances in the benchmark set solved in this article.

Table 2. Wall-clock of the three algorithms (in seconds) for 60 HCSP instances, 20 for
each dimension —8192×256, 16384×512, and 32768×1024.

8192×256 16384×512 32768×1024
MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD

1 15.0 11.6 10.6 110.7 9.7 16.7 839.8 21.1 112.6
2 15.0 9.8 9.8 110.6 9.9 17.0 838.8 20.5 115.8
3 14.8 9.7 8.5 110.6 9.7 17.6 842.5 18.9 98.5
4 14.9 10.4 9.7 110.7 11.4 19.1 841.7 20.9 111.3
5 14.9 8.1 8.4 111.2 13.1 17.1 845.3 22.2 105.7
6 14.9 7.9 8.9 111.4 12.0 17.9 834.6 21.9 110.9
7 14.9 8.4 9.0 111.3 11.7 19.0 837.4 20.6 105.5
8 15.3 8.0 8.4 111.3 12.4 17.1 843.2 19.6 112.3
9 15.0 8.6 8.3 111.1 10.0 18.1 838.4 19.6 105.0

10 15.0 11.8 8.2 110.7 12.4 18.9 839.3 21.4 122.2
11 14.8 8.8 8.6 110.8 13.1 19.8 840.4 20.6 109.6
12 14.9 7.9 8.2 110.9 12.6 19.8 838.7 19.1 100.3
13 14.9 7.7 8.2 110.7 13.4 19.9 843.1 20.3 110.3
14 14.9 7.5 8.2 110.8 13.5 20.2 841.8 19.9 112.1
15 14.9 7.7 8.2 110.5 13.4 19.1 844.0 20.8 107.4
16 15.1 8.7 8.2 110.8 12.7 19.9 834.9 22.0 111.2
17 15.0 7.5 8.2 111.3 13.3 19.9 837.6 21.1 106.1
18 14.6 9.0 8.3 111.3 13.2 19.7 842.7 20.5 108.3
19 14.9 7.5 8.2 111.2 13.0 20.2 838.8 19.3 125.0
20 14.9 8.1 8.2 111.1 13.3 19.1 840.0 19.9 99.3

Parallel performance. We have already provided the reader with some hints
about the main features of the computational times of the three algorithms, but
we now want to detail them in a separate experimentation. Table 2 includes
the wall-clock time of MinMin, gPALSMCT and gPALSMMDD for the 60 HSCP
instances with increasing size considered in this work. The experimental con-
ditions for the two gPALS methods have changed: they stop when they reach
a task schedule with a lower makespan than that of MinMin (in the previous
section, the stopping condition was to reach 30 seconds of GPU computation).

The first clear claim is that the two gPALS versions are always faster than
MinMin to achieve an task schedule with the same makespan. The truly inter-
esting point here is that, the larger the instance, the higher the reduction in the

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 107 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Fig. 5. Average execution time improvements of gPALSMCT and gPALSMMDD with
respect to MinMin.

execution times. Indeed, MinMin requires roughly 15, 110, and 840 seconds to
build a solution for 8192×256, 16384×512, and 32768×1024 instances, respec-
tively, whereas gPALSMCT and gPALSMMDD need 8, 12, and 20 seconds, and 9,
18, and 110 seconds, respectively. These differences can be clearly seen in Fig. 5,
which displays the average execution time improvements over all the instances
of the same size reached by gPALSMCT and gPALSMMDD. The execution time
improvement refers to the reduction in the execution time of an algorithm that
runs in a parallel computing platform (in our case the GPU) with respect another
one that executes sequentially, i.e., tCPU

tGPU
. For the smaller instance considered in

this work, the two gPALS approaches perform the same, with execution time im-
provements of 1.73 and 1.67. However, as long as the size of instance increases,
MinMin requires more time to complete, i.e., it does not scale well, whereas our
approaches do scale properly, specially gPALSMCT , which has been able to reach
an execution time improvement of 40.1 for the largest instance. We would like
to dive a little bit more on the results of the two gPALS versions and explain
why the execution time improvements of gPALSMCT is much higher. Obviously,
it has to do with the computational time of the initial task schedule by the
heuristic. MCT is a extremely fast method whose translation to the GPU does
not make sense because little benefits would be obtained. On the other hand,
pMinMinDD is much heavier and, even ported to the GPU, takes longer to build
a solution, what reduces its execution time improvements.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 108 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

6 Conclusions

This work has presented gPALS, a GPU implementation of a randomized local
search procedure for addressing large instances of the scheduling problem in
HC systems. The aim of the algorithm is to reach accurate schedules in very
short times for large HCSP instances using the parallel computing resources
available in GPUs. To do so, from a initial solution computed by either the
MCT heuristic or a parallel version of the MinMin heuristic, two variants of
gPALS were implemented in GPU by iteratively applying two basic operations
that either swap or move randomly chosen tasks allocated to randomly chosen
machines. The key is that the variation in the makespan of these operations
can be computed efficiently and, consequently, several millions operations can
be performed in few seconds.

The experimental analysis performed using a testbed with 60 large HCSP
instances of three increasing dimensions (up to 32768 tasks and 1024 machines)
compared the two proposed versions of gPALS against Min-Min, one of the best
state-of-the-art list scheduling heuristics for HC environments. The experimen-
tal results demonstrate that the proposed gPALS implementations are able of
compute better makespan values than MinMin in all the 60 studied instances.

The gPALSMMDD variant is the best method between the two GPU im-
plementations, obtaining significant improvements (up to 8.18%) with respect
to MinMin. These reductions in the makespan obtained by gPALSMMDD have
taken a wall-clock time of 30 seconds, which represent a factor of almost 8×
in the computational efficiency with respect to the MinMin scheduler. On
the other hand, gPALSMCT computed schedules significantly faster than both
gPALSMMDD and MinMin, achieving execution time improvements up to 41.05
with respect to MinMin. The solution computed by gPALSMCT improves upon
the ones computed using MinMin, but they have lower quality (i.e., larger
makespan values) than those found by the gPALSMMDD implementation. Re-
garding the execution time comparison, both gPALS implementations are able
to improve over the MinMin makespan result in only a few seconds of execution
time (without counting the time spent in computing the initial solution).

The previously commented results have demonstrated that the new
gPALSMMDD algorithm is an accurate and very efficient scheduler for the HCSP
instances tackled in this article.

Two main lines are proposed for future work: improve the efficacy of the
search in gPALS, and also to enhance the computational efficiency of the pro-
posed optimization method. Regarding the first issue, we propose to analyze
carefully the landscape of the HCSP, in order to design specialized basic oper-
ations that further improve the efficacy of the search in gPALS, by avoiding to
explore non-promising regions of the search space. On the other hand, in order to
be able to address even larger HCSP instances in shorter times, we also plan to
engineer a more efficient version of gPALS by employing domain-decomposition
parallel computing techniques in GPU.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 109 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Acknowledgments. The work of S. Iturriaga and S. Nesmachnow has been
partially supported by ANII and PEDECIBA, Uruguay. The work of F. Luna
and E. Alba has been partially funded by the Spanish Ministry of Science and
Innovation and FEDER under contracts TIN2008-06491-C04-01 (the MSTAR
project) and TIN2011-28194 (the roadME project), and by the Andalusian Gov-
ernment under contract P07-TIC-03044 (the DIRICOM project).

References

1. E. Alba and G. Luque. A new local search algorithm for the DNA fragment assem-
bly problem. In C. Cotta and J. van Hemert, editors, Proceedings of 7th European
Conference on Evolutionary Computation in Combinatorial Optimization, volume
4446 of Lecture Notes in Computer Science, pages 1–12. Springer, 2007.

2. S. Ali, H. Siegel, M. Maheswaran, S. Ali, and D. Hensgen. Task execution time
modeling for heterogeneous computing systems. In Proceedings of the 9th Het-
erogeneous Computing Workshop, page 185, Washington, DC, USA, 2000. IEEE
Computer Society.

3. T. Braun, H. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys, B. Yao, D. Hensgen, and R. Freund. A comparison of eleven static
heuristics for mapping a class of independent tasks onto heterogeneous distributed
computing systems. Journal of Parallel and Distributed Computing, 61(6):810–837,
2001.

4. H. El-Rewini, T. Lewis, and H. Ali. Task scheduling in parallel and distributed
systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

5. M. Eshaghian. Heterogeneous Computing. Artech House, Norwood, MA, USA,
1996.

6. R. Fernando, editor. GPU gems. Addision-Wesley, Boston, 2004.
7. I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing Infras-

tructure. Morgan Kaufmann Publishers, 1998.
8. R. Freund, V. Sunderam, A. Gottlieb, K. Hwang, and S. Sahni. Special issue on

heterogeneous processing. Journal of Parallel and Distributed Computing, 21(3),
1994.

9. M. Garey and D. Johnson. Computers and intractability. Freeman, 1979.
10. R. Graham, J. Lawler, E. Lenstra, and A. Kan. Optimization and approximation in

deterministic sequencing and scheduling: a survey. Ann of Discrete Mathematics,
5:287–326, 1979.

11. Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computer Surveys, 31(4):406–471, 1999.

12. J. Leung, L. Kelly, and J. Anderson. Handbook of Scheduling: Algorithms, Models,
and Performance Analysis. CRC Press, Inc., Boca Raton, FL, USA, 2004.

13. S. Nesmachnow and M. Canabé. GPU implementations of scheduling heuristics
for heterogeneous computing environments. In Proceedings of the XVII Congreso
Argentino de Ciencias de la Computación, 2011.

14. S. Nesmachnow, H. Cancela, and E. Alba. A parallel micro evolutionary algo-
rithm for heterogeneous computing and grid scheduling. Applied Soft Computing,
12(2):626–639, 2012.

15. S. Nesmachnow, F. Luna, and E. Alba. An efficient stochastic local search for
heterogeneous computing scheduling. In 15th International Workshop on Nature
Inspired Distributed Computing, 2012.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 110 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

16. nVidia. CUDA website. Available online http://www.nvidia.com/object/cuda_

home.html, 2010. Accessed on July 2011.
17. F. Pinel, B. Dorronsoro, and P. Bouvry. Solving very large instances of the schedul-

ing of independent tasks problem on the GPU. Journal of Parallel and Distributed
Computing, 2012. In press, DOI:10.1016/j.jpdc.2012.02.018.

18. F. Pinel, J. Pecero, P. Bouvry, and S. U. Khan. A two-phase heuristic for the
scheduling of independent tasks on computational grids. In 2011 International
Conference on High Performance Computing and Simulation (HPCS), pages 471
– 477, 2011.

19. G. Ritchie and J. Levine. A fast, effective local search for scheduling indepen-
dent jobs in heterogeneous computing environments. In Proceedings of the 22nd
Workshop of the UK Planning and Scheduling Special Interest Group, 2003.

HPCLatAm 2012, pp. 96-111 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 111 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Biclustering of very large datasets
with GPU tecnology using CUDA

Javier Arnedo-Fdez, Igor Zwir?, and Roćıo Romero-Zaliz

Dpt. of Computer Science and Artificial Intelligence
University of Granada

Spain
{arnedo,igor,rocio}@decsai.ugr.es

Abstract. In this work we report our first research steps on using GPUs
to accelerate biclustering of very large data sets, which are common
in real world applications such as biomedical and biotechnological. The
bicluster problem is NP-hard, thus, finding an optimal solution could
be time consuming, especially when dealing with large data sets. We
present a GPU-accelerated implementation of the biclustering proba-
bilistic move-based algorithm called FLOC, which can efficiently and
accurately approximate biclusters with low mean squared residues with-
out the impact of random interference. Results show that when the size
of the dataset increases, the GP-GPU version of FLOC solves the biclus-
tering problem much faster than the CPU FLOC version running on a
single CPU core.

Keywords: Data-mining, Bioinformatics, Biclustering, Parallel algorithm,
GPU, CUDA, GP-GPU.

1 Introduction

There has been a substantial interest in scientific and engineering computing
community to speed up the CPU-intensive tasks on graphical processing units
(GPUs) with the development of General Purpose GPU (GP-GPU) systems,
since GPUs have a very large memory bandwidth and computational power.
Cluster analysis is a widely used technique for grouping a set of objects into
classes of similar objects and commonly used in many fields such as data mining,
pattern recognition and bioinformatics [1, 2] and a suitable application for the
GPUs intensive power of calculation. A special case of clustering is biclustering
where there is a simultaneously grouping of rows and columns to uncover sub-
matrices of a given data matrix that optimize a desired objective function [3].

There are many biological applications of biclustering algorithms mainly fo-
cused on DNA microarray studies and ranges from gene sample classification,
genetic pathways identifcation, gene co-regulation study, transcriptional regula-
tory modules identification, biomarkers discovery, drug design, single nucleotide

? This work is supported by University of Granada - GREIB.PT.2011.20 -
GREIB.AL.2011.06.

HPCLatAm 2012, pp. 112-118 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 112 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

2 Javier Arnedo-Fdez, Igor Zwir, and Roćıo Romero-Zaliz

polymorphism (SNP) analysis, and genetic interactions identification [4]. Even-
though microarray studies are beign replaced by newer and sophisticated meth-
ods, like next generation sequencing (NGS), biclustering techniques are still a
useful tool for their analysis [5, 6].

Although there is a need to build faster biclustering algorithms that can deal
with very large datasets, there is, to our best knowledge, only one biclustering
GP-GPU implementation published [7].

2 Background

2.1 Parallel architectures

While conventional CPU clusters still dominate the High-Performance Comput-
ing (HPC) market, GPUs are gaining popularity as cost-effective HPC accelera-
tors. GPUs provide a huge amount of fine-grain parallelism, since thousands of
threads may be running concurrently [7].

GP-GPU systems have become increasingly popular in recent years as a
means of delivering large computational power to the desktop market. Such sys-
tems consist of a host CPU with the GPU connected through a PCI-Express
link. GPUs support high computational rates (in terms of floating point oper-
ations per second) and have a high bandwidth to memory on the GPU board.
This makes such systems ideal for throughput oriented applications [8].

Special libraries and packages were developed for building GP-GPU system,
like the API extension the C programming language called CUDA [9] (Compute
Unified Device Architecture) for NVIDIA cards and OpenCL [10]. In this work
we will use CUDA to code normal C functions and run them on the GPU’s
stream processors, thus taking advantage of a GPU’s ability to operate on large
matrices in parallel, while still making use of the CPU when appropriate.

2.2 Biclustering

In gene expression analysis a bicluster is defined as a submatrix spanned by a
set of genes and a set of samples. Alternatively, a bicluster may be defined as
the corresponding gene and sample subsets [11].

The concept of bicluster was introduced by Cheng and Church [12] to capture
the coherence of a subset of genes and a subset of conditions. Unlike previous
methods that treat similarity as a function of pairs of genes or pairs of conditions,
the bicluster model measures coherence within the subset of genes and condition.
The coherence score is defined as a symmetric function of genes and conditions
involved and thereby the biclustering is a process of simultaneous grouping of
genes and conditions. The so called mean squared residue was employed and
applied to expression data transformed by a logarithm and augmented by the
additive inverse. While the mean squared residue represents the variance of the
selected genes and conditions with respect to the coherence, the goal of biclus-
tering is to find biclusters with low mean squared residue [13]. It has been proven

HPCLatAm 2012, pp. 112-118 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 113 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Biclustering of very large datasets with GPU tecnology using CUDA 3

that the problem of finding biclusters satisfying these criteria is NP-hard in gen-
eral. Therefore, a set of heuristic algorithms were designed by Cheng and Church
[12] to either find one bicluster or a set of biclusters which consist of iterations
of masking null values and discovered biclusters, coarse and fine node deletion,
node addition, and the inclusion of inverted data.

2.3 FLOC

Cheng and Church original heuristics suffer from some serious drawback that
produce the masking of null values and discovered biclusters with random num-
bers that may result in the phenomenon of random interference which in turn
impacts the discovery of high quality biclusters. To address this issue and to
further accelerate the biclustering process, a probabilistic move-based algorithm
called FLOC [13] was developed for generalizing the model of bicluster to in-
corporate null values that can discover a set of possibly overlapping biclusters
simultaneously.

The data is represented in the form of a matrix where the rows correspond to
the genes and the columns correspond to the conditions. The FLOC biclustering
algorithm starts from a set of seeds (initial biclusters) and carries out an iterative
process to improve the overall quality of the biclustering. At each iteration, each
row and column is moved among biclusters to produce a better biclustering in
terms of lower mean squared residues. The best biclustering obtained during each
iteration will serve as the initial biclustering for the next iteration. The algorithm
terminates when the current iteration fails to improve the overall biclustering
quality [13].

3 GP-GPU implementation of FLOC

The FLOC algorithm is implemented inside a Bioconductor package called Bi-
cARE [14]. The complexity of this FLOC algorithm implementation is O((N +
M)2 × k × p), where N and M are the number of rows and columns of the
original data matrix D, while k is the number of the biclusters to search for and
p is the number of iterations till termination [13]. Although the FLOC biclus-
tering method is faster than the original Cheng and Church approach, when N
and M are large the FLOC algorithm performance is quite slow for real world
applications where the number of genes and conditions can be very high.

To accelerate the FLOC algorithm we decided to implement a GPU version
of the original algorithm based on the CUDA programming model from NVIDIA
[9].

To detect which function or piece of code were the most time consuming, we
perfomed a profiling of the FLOC algorithm. The funtion which calculates of the
residue of a bicluster (see Definitions 1, 2, 3) is called several times during the
execution of the algorithm, each time performing O((M + N)× k) operations.

Definition 1. The residue of an entry dij of data matrix D in a bicluster (I, J),
where I ⊆ {1, . . . ,M} subset of genes, J ⊆ {1, . . . , N} subset of condition, is

HPCLatAm 2012, pp. 112-118 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 114 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

4 Javier Arnedo-Fdez, Igor Zwir, and Roćıo Romero-Zaliz

Generate initial
biclusters

Determine best action
for each row and column

Perform the best action
for each row and column

sequentially

Improved?

END
No

Yes

START

PHASE 1

PHASE 2

Calculate r for each
cell in the data matrix

ij

Sum all r in each
GPU block

ij

Calculate action cost
based on rIJ

GPU
code

CPU
code

Fig. 1. GP-GPU FLOC flowchart. In gray we show the section of the flowchart that is
parallelized using GP-GPU.

rij = dij − diJ + dIJ if dij is specified in the bicluster, else rij = 0. diJ stands
for the sum of all dij in J , while dIJ stands for the sum of all dij for all I and
J .

Definition 2. The volume vIJ of a bicluster (I, J), where I ⊆ {1, . . . ,M} subset
of genes, J ⊆ {1, . . . , N} subset of condition, is defined as the number of specified
entries dij such that i ∈ I and j ∈ J .

Definition 3. The residue of a bicluster (I, J) is rI,J =
∑

i∈I,j inJ r2ij
vIJ

, where
I ⊆ {1, . . . ,M} subset of genes, J ⊆ {1, . . . , N} subset of conditions, rij is the
residue of the entry dij and vij is the volume of the bicluster.

To accelerate the calculus of the residue fuction we created a function to
be executed in each core of a GPU producing the calculation for a specific cell
of the data matrix and its posterior sum. Each cell (i, j) of the data matrix
calculates r2ij . Afterwards, the sum of all cell residues are performed in the same
GPU device for each block independently, avoiding the overhead of transmitting
all data from device to CPU. Finally, in the CPU the sum of every block is
calculated and divided by the volume of the bicluster vIJ (Figure 1).

4 Experiments and Results

Several experiments were performed to analyze the performance of our GPU-
FLOC implementation.

HPCLatAm 2012, pp. 112-118 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 115 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Biclustering of very large datasets with GPU tecnology using CUDA 5

First, we wanted to see if the size of the data matrices used for biclustering
was actually an issue as we thought it would be. Therefore, we fixed all FLOC
parameters but the size of the data matrices and run the original and improved
FLOC algorithms. We created randomized matrices for sizes 10 × 10, 50 × 50,
100 × 100, 200 × 200, 300 × 300, 500 × 500, 1000 × 1000 and 2000 × 2000. For
each size we created 5 different random matrices, obtaining 40 matrices in total.
Figure 2 shows the results obtained using this synthetic dataset. Each point in
the plot represents the mean time spent in the biclustering calculation for each
matrix using different sizes. We can infer from this experiment that for small
matrices (Figure 2(a)) the CPU FLOC version is faster, but when the size of the
dataset is above aproximately 250× 250 the GPU-FLOC version is much more
efficient. All the previous experiments using the GPU-FLOC algorithm were run
using 256 threads in each block of a GPU device.

(a) CPU FLOC

Matrix size
Time consumption (s)
Mean Standard Deviation

10× 10 0.01 1.79e-03
50× 50 1.32 2.43e-02

100× 100 10.06 4.47e-03
200× 200 79.10 2.53e-01
300× 300 266.34 6.79e-01
500× 500 1233.60 1.41e+00

1000× 1000 9859.20 8.47e+00
2000× 2000 80152.90 1.56e+02

(b) GP-GPU FLOC

Matrix size
Time consumption (s)
Mean Standard Deviation

10× 10 2.40 6.98e-02
50× 50 15.36 1.23e-01

100× 100 29.47 2.18e-01
200× 200 100.88 2.54e-01
300× 300 170.40 4.34e-01
500× 500 483.94 8.48e-01

1000× 1000 2050.00 3.15e+00
2000× 2000 10449.70 1.47e+01

Table 1. Statistics for the performed experiments.

Second, we wanted to test which thread and block configuration was the best
option and whether changing these parameters made a substantial difference in
performance. The experimental framework used fixed all FLOC parameters but
the number of threads per block. Figure 2(b) shows the results. As we expected,
when the number of threads per block increases the performace of the GPU
implementation is faster, but when the number of threads is quite high the gain
is negligible. Nevertheless, using the slowest configuration of the GP-GPU FLOC
(i.e., 16 threads per block), its performance is much better than the CPU FLOC
algorithm.

All experiments were run in an Intel i7 980 machine with 16 GB of RAM
and Gainward GeForce GTX 480 video cards with 1.5 GB of RAM each.

5 Discussion

Preliminary results show that the use of GPU acceleration can substantially
improve the performance of biclustering methods. This improvement will help

HPCLatAm 2012, pp. 112-118 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 116 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

6 Javier Arnedo-Fdez, Igor Zwir, and Roćıo Romero-Zaliz

0 500 1000 1500 2000

0
20

00
0

40
00

0
60

00
0

80
00

0

CPU FLOC vs. GP-GPU FLOC version

Matrix row and column size

Ti
m

e
(s

)

CPU FLOC
GP-GPU FLOC

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

(a) CPU FLOC vs. GP-GPU FLOC ver-
sion.

0 500 1000 1500 2000

0
20

00
0

40
00

0
60

00
0

80
00

0

GP−GPU FLOC using different number of threads per block

Matrix row and column size

T
im

e
(s

)

CPU FLOC
GP−GPU FLOC using 16 threads per block
GP−GPU FLOC using 64 threads per block
GP−GPU FLOC using 256 threads per block

(b) GP-GPU FLOC using different num-
ber of threads per block.

Fig. 2. CPU FLOC vs. GP-GPU FLOC version. Matrix size ranges from 10 × 10
to 2000 × 2000. The number of biclusters searched were 10 and 50 iterations were
performed, for both versions.

bioinformatic software to cope with the large amount of data that NGS technol-
ogy is providing.

Memory transfers from the host CPU to the GPU devices over the PCI-
Express bus is the main issue when programming GPU applications. The band-
width of PCI-Express is much lower compared to the on-board memory band-
width. This can then become the bottleneck of the system, especially if large
amounts of data need to be transferred over the bus [9]. It is therefore critical to
minimize the total data that is sent back and forth from CPU to GPU memory.
Also, there is a limit in the number of threads per block and blocks per grid
that has to be considered. Not all algorithms are suitable for GPU acceleration,
whatsmore a wrong implementation can cause the GP-GPU algorithm to be
even slower than the CPU version.

Future work will be devoted to test all possible GPU parameter’s configura-
tion including the use of more than one GPU, and to compare them with other
parallel architectures like MPI or PVM [15, 16].

References

1. Yildirim, A.A., Ozdoǧan, C.: Parallel wavelet-based clustering algorithm on gpus
using cuda. Procedia Computer Science 3(0) (2011) 396 – 400

2. Petros, X., Nikita, B., Neng, F., Panos M, P. In: Biclustering: Algorithms and
Application in Data Mining. John Wiley & Sons, Inc. (2010)

3. Busygin, S.: Biclustering in data mining. Computers & Operations Research 35(9)
(2008) 2964–2987

HPCLatAm 2012, pp. 112-118 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 117 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Biclustering of very large datasets with GPU tecnology using CUDA 7

4. Liu, L., Wei, D., Li, Y.: Handbook of Research on Computational and Systems
Biology: Interdisciplinary Applications. Igi Global (2011)

5. Wang, J., Tan, A., Tian, T.: Next Generation Microarray Bioinformatics: Methods
and Protocols. Methods in Molecular Biology. Springer Verlag (2011)

6. Huang, Q., Wu, L.Y., Qu, J.B., Zhang, X.S.: Analyzing time-course gene expression
data using profile-state hidden Markov model. In: IEEE International Conference
on Systems Biology. (2011)

7. Mej́ıa-Roa, E., Garćıa, C., Gómez, J., Prieto-Mat́ıas, M., Nogales-Cadenas, R.,
Tirado, F., Pascual-Montano, A.D.: Biclustering and classification analysis in gene
expression using nonnegative matrix factorization on multi-gpu systems. In: 11th
International Conference on Intelligent Systems Design and Applications. (2011)

8. Satish, N., Sundaram, N., Keutzer, K.: Optimizing the use of gpu memory in
applications with large data sets. In: HiPC. (2009) 408–418

9. Kirk, D.B., Hwu, W.m.W.: Programming Massively Parallel Processors: A Hands-
on Approach. 1st edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2010)

10. Khronos OpenCL Working Group: The OpenCL Specification, version 1.0.29. (8
December 2008)

11. Tanay, A., Sharan, R., Shamir, R.: Biclustering Algorithms: A Survey. Handbook
of Computational Molecular Biology (2004)

12. Cheng, Y., Church, G.M.: Biclustering of expression data. Proceedings / ... Inter-
national Conference on Intelligent Systems for Molecular Biology ; ISMB. Interna-
tional Conference on Intelligent Systems for Molecular Biology 8 (2000) 93–103

13. Yang, J., Wang, H., Wang, W., Yu, P., Ibm, U., Chapel, U., Ibm, H., Watson, T.J.,
Watson, T.J.: Enhanced biclustering on expression data. In: Proc. of 3rd IEEE
Symposium on BioInformatics and BioEngineering (BIBE03. (2003) 321–327

14. Gestraud, P., Brito, I., Barillot, E.: Bicare: Biclustering analysis and results ex-
ploration (2010)

15. Pacheco, P.S.: Parallel programming with MPI. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1996)

16. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.S.:
PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Par-
allel Computing. Scientific and engineering computation. (1994)

HPCLatAm 2012, pp. 112-118 (full paper)
ISSN 2422-5207

Session: GPU computing
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 118 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Optimizing Latency in Beowulf Clusters

Rafael Garabato1, Andrés More12, and Victor Rosales1

1 Argentina Software Design Center (ASDC - Intel Córdoba)
2 Instituto Universitario Aeronáutico (IUA)

Abstract. This paper discusses how to decrease and stabilize network
latency in a Beowulf system. Having low latency is particularly important
to reduce execution time of High Performance Computing applications.
Optimization opportunities are identified and analyzed over the differ-
ent system components that are integrated in compute nodes, including
device drivers, operating system services and kernel parameters.

This work contributes with a systematic approach to optimize communi-
cation latency, provided with a detailed checklist and procedure. Perfor-
mance impacts are shown through the figures of benchmarks and mpi-
BLAST as a real-world application. We found that after several straight-
forward optimizations on default configuration Gigabit Ethernet latency
was reduced from about 50 µs of communication latency. Using different
techniques, it is possible to get as low as nearly 20 µs.

1 Introduction

1.1 Beowulf Clusters

Instead of purchasing an expensive and high-end symmetric multiprocessing
(SMP) system, most scientists today choose to interconnect multiple regular-
size commodity systems as a means to scale computing performance and gain
the ability to resolve bigger problems without requiring heavy investments [1]
[2] [3].

The key driving factor is cost, hence out-of-the-box hardware components are
used together with open source software to build those systems. In the specific
case of academia, open source software provides the possibility to make soft-
ware stack modifications, therefore enabling innovation and broadening their
adoption.

Clusters are nearly ubiquitous at the Top500 ranking listing most powerful
computer systems worldwide, clustered systems represent more than 80% of the
list (Figure 1).

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 119 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Fig. 1. Top500 List by Architecture (as of November 2011)

As the cheapest network fabrics are the ones being distributed on-board
by system manufacturers, Ethernet is the preferred communication network in
Beowulf clusters. At the moment Gigabit Ethernet is included integrated on
most hardware.

1.2 Latency

Latency itself can be measured at different levels, in particular communication
latency is a performance metric representing the time it takes for information to
flow from one compute node into another. It then becomes not only important
to understand how to measure the latency of the cluster but also to understand
how this latency affects the performance of High Performance applications [4].

In the case of latency-sensitive applications, messaging needs to be highly
optimized and even be executed over special-purpose hardware. For instance la-
tency directly affects the synchronization speed of concurrent jobs in distributed
applications, impacting their total execution time.

1.3 Related Work

There are extensive work on how to reduce communication latency [5] [6]. How-
ever, this work contributes not with a single component but with a system wide
point of view.

The top supercomputers in the world report latencies that commodity sys-
tems cannot achieve (Figure 2). They utilize specially built network hardware,
where the cost factor is increased to get lower latency.

System Latency Description

HP BL280cG65 0.49 µsec Best Latency

Fujitsu K Computer 6.69 µsec Top system

Fig. 2. Latency at the HPCC ranking

High performance network technology (like InfiniBand [7]) is used in cases
were Ethernet cannot meet the required latency (see reference values in Figure

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 120 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

3). Some proprietary network fabrics are built together with supercomputers
when they are designed from scratch.

Latency Technology

30-125 µsec 1Gb Ethernet

5-30 µsec 10Gb Ethernet

Fig. 3. System Level Ethernet Latency

1.4 Problem Statement

The time it takes to transmit on a network can be calculated as the required
time a message information is assembled and dissembled plus the time needed to
transmit message payload. Equation 1 shows the relation between these startup
plus throughput components for the transmission of n bytes.

t(n) = α+ β × n (1)

In the hypothetical case where zero bytes are transmitted, we can get the
minimum possible latency on the system (Equation 2). The value of α is also
known as the theoretical or zero-bytes latency.

t(0) = α (2)

It is worth noticing that α is not the only player in the equation, 1/β is called
network bandwidth, the maximum transfer rate that can be achieved. β is the
component that affects the overall time as a function of the package size.

2 Benchmarking Latency

There are different benchmarks used to measure communication latency.

2.1 Intel MPI Benchmarks

The Intel MPI Benchmarks (IMB) are a set of timing utilities targeting most
important Message Passing Interface (MPI) [8] functions. The suite covers the
different versions of the MPI standard, and the most used utility is Ping Pong.

IMB Ping Pong performs a single message transfer exercise between two
active MPI processes (Figure 4). The action can be run multiple times using
varying message lengths, timings are averaged to avoid measurement errors.

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 121 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Fig. 4. IMB Ping Pong Communication

Using only MPI basic routines, a package is sent (MPI SEND) from a host
system and received (MPI RECV) on a remote one (Figure 5) and the time is
reported as half the time in µs for an X long bytes (MPI BYTE) package to
complete a round trip.

Fig. 5. IMB Ping Pong Benchmark

As described by the time formula at Equation 1, different measures of trans-
mission time are obtained depending on the package size. To get the minimum
latency an empty package is used.

2.2 Other Benchmarks

There are other relevant HPC benchmarks that are usually used to exercise
clusters: HPL and HPCC. These exercise the system from an application level,
integrating all components performance for a common goal.

It is worth mentioning that there are other methods that work at a lower
level of abstraction, for instance using Netperf [11] or by following RFC 2544
[12] techniques. However these last two measure latency at network protocol and
device level respectively.

High Performance Linpack High Performance Linpack is a portable bench-
mark for distributed-memory systems doing pure matrix multiplication [9]. It

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 122 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

provides a testing and timing tool to quantify cluster performance. It requires
MPI and BLAS supporting libraries.

High Performance Computing Challenge Benchmarks The HPC Chal-
lenge benchmark suite [10] packages 7 benchmarks:

HPL: measures floating point by computing a system of linear equations.

DGEMM: measures the floating point rate of execution of double precision real
matrix-matrix multiplication.

STREAM: measures sustainable memory bandwidth.

PTRANS: computes a distributed parallel matrix transpose

RandomAccess: measures random updates of shared distributed memory

FFT: double precision complex one-dimensional discrete Fourier transform.

b eff: measures both communication latency and bandwidth

HPL, DGEMM, STREAM, FFT run in parallel in all nodes, so they can
be used to check if cluster nodes are performing similarly. PTRANS, Rando-
mAccess and b eff exercise the system cluster wide. It is expected that latency
optimizations impact their results differently.

3 Methods

Given a simplified system view of a cluster, there are multiple compute nodes
that together run the application. An application uses software such as libraries
that interface with the operating system to reach hardware resources through
device drivers. This work analyzes the following components:

Ethernet Drivers: interrupt moderation capabilities

System Services: interrupt balancing and packet-based firewall

Kernel Settings: low latency extensions on network protocols

Further work to optimize performance is always possible; only the most rele-
vant optimizations were considered according to gathered experience over more
than 5 years on the engineering of volume HPC solutions.

3.1 Drivers

As any other piece of software, device drivers implement algorithms which, de-
pending on different factors, may introduce latency. Drivers may even expose
hardware functionalities or configurations that could change the device latency
to better support the Beowulf usage scenario.

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 123 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Interrupt Moderation Interrupt moderation is a technique to reduce CPU
interrupts by caching them and servicing multiple ones at once [13]. Although it
make sense for general purpose systems, this introduces extra latency, so Ether-
net drivers should not moderate interruptions when running in HPC clusters.

To turn off Interrupt Moderation on Intel network drivers add the following
line on each node of the cluster and reload the network driver kernel module.
Refer to documentation [15] for more details.

echo "options e1000e InterruptThrottleRate=0" > /etc/modprobe.conf

modprobe -r e1000e && modprobe e1000e

For maintenance reasons some Linux distributions do not include the config-
uration capability detailed above. In those cases, the following command can be
used to get the same results.

ethtool eth0 rx-usecs

There is no portable approach to query kernel modules configurations in all
Linux kernel versions, so configuration files should be used as a reference.

3.2 Services

Interrupt Balancing Some system services may directly affect network la-
tency. For instance irqbalance job is to distribute interrupt requests (IRQs)
among processors (and even between each processor cores) on a Symmetric
Multi-Processing (SMP) system. Migrating IRQs to be served from one CPU
to another is a time consuming task that although balance the load it may affect
overall latency.

The main objective of having such a service is to balance between power-
savings and optimal performance. The task it performs is to dynamically dis-
tribute workload evenly across CPUs and their computing cores. The job is done
by properly configuring the IO-ACPI chipset that maps interruptions to cores.

An ideal setup will assign all interrupts to the cores of a same CPU, also
assigning storage and network interrupts to cores near the same cache domain.
However this implies processing and routing the interrupts before running them,
which has the consequence of adding a short delay on their processing.

Turning off the irqbalance service will help then to decrease network latency.
In a Red Hat compatible system this can be done as follows:

service irqbalance stop

chkconfig irqbalance off

$ service irqbalance status

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 124 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Firewall As compute nodes are generally isolated on a private network reach-
able only through the head node, the firewall may not even be required. The
system firewall needs to review each package received before continuing with the
execution. This overhead increases the latency as incoming and outgoing packet
fields are inspected during communication.

Linux-based systems have a firewall in its kernel that can be controlled
throughout a user-space application called iptables. This application runs in the
system as a service, therefore the system’s service mechanisms has to be used to
stop it.

service iptables stop

chkconfig iptables stop

$ lsmod | grep iptables

3.3 Kernel Parameters

The Linux Transport Control Protocol (TCP) stack makes decisions by default
that favors higher throughput as opposed to low latency. The Linux TCP stack
implementation has different packet lists to handle incoming data, the PreQueue
can be disabled so network packets will go directly into the Receive queue. In
Red Hat compatible systems this can be done with the command:

echo 1 > /proc/sys/net/ipv4/tcp_low_latency

$ sysctl -a | grep tcp_low_latency

There are others parameters that can be analyzed [14], but the impact they
cause are too application specific to be included on a general optimization study.

4 Optimization Impact

4.1 IMB Ping Pong

Using IMB Ping Pong as workload, the following results (Figure 6) reflect how
the different optimizations impact communication latency. The actual figures on
average and deviation are shown below at Figure 7.

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 125 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Fig. 6. Comparison of Optimizations

Optimization x̃ (σ2) Impact

Default 50.03 (4.31) N/A

IRQ Moderation 31.63 (0.83) 36.79%

Firewall 41.62 (8.90) 16.82 %

TCP LL 51.59 (8.22) -3.11%

IRQ Balance 49.72 (9.68) 0.62 %

Combined 21.31 (2.09) 57.40 %

Fig. 7. IMB Ping Pong Optimization Results

The principal cause of overhead in communication latency is then IRQ mod-
eration. Another important contributor is the packet firewall service. We found
that the low latency extension for TCP was actually slightly increasing the IMB
Ping Pong reported latency. In the case of the IRQ balance service, the impact
is only minimal.

Optimizations impact vary, and not surprisingly they are not accumulative
when combining them all. At a glance, it is possible to optimize the average
latency in nearly 54%, nearly halving result deviations.

4.2 High Performance Linpack

A cluster-wide HPL running over MPI reported results as shown in Figure 8. The
problem size was customized to Ns:37326 NBs:168 Ps:15 Qs:16 for a quick but
still representative execution with a controlled deviation.

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 126 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Optimization Wall-time Gflops

Default 00:20:46 0.02921

Optimized 00:09:03 0.07216

Fig. 8. HPL Results

As we can see on the results, the actual synchronization cycle done by the
algorithm heavily relies on having low latency. The linear system is partitioned
in smaller problem blocks which are distributed over a grid of processes which
may be on different compute nodes. The distribution of matrix pieces is done
using a binary tree among compute nodes with several rolling phases between
them. The required time was then reduced 56%, and the gathered performance
was increased almost 2.5 times.

4.3 HPCC

Figures 9 and 10 show HPCC results obtained with a default and optimized
Beowulf cluster. As we can see on the results, the overall execution time is
directly affected with a 29% reduction. The performance figures differ across
packaged benchmarks as they measure system characteristics that are affected
by latency in diverse ways.

Fig. 9. HPCC Performance Results (higher is better)

Optimization Wall-time

Default 00:10:32

Optimized 00:07:27

Fig. 10. HPCC Timing Results

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 127 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Local benchmarks like STREAM, DGEMM and HPL are not greatly af-
fected, as they obviously do not need communication between compute nodes.
However, the actual latency, bandwidth and PTRANS benchmark are impacted
as expected due they communication dependency.

4.4 mpiBLAST

In order to double check if any of the optimization have hidden side effects and
the real impact on the execution of a full-fledge HPC application, a real-world
code was exercised. mpiBLAST [16] is an open source tool that implements DNA-
related algorithms to find regions of similarity between biological sequences.

Figure 11 shows the actual averaged figures after multiple runs. Results got
with a default and optimized system on a fixed workload for mpiBLAST. The
required time to process the problem was reduced by 11% with the previous 42%
improvement as measured by IMB Ping Pong.

Optimization Wall-time

Default 534.33 seconds

Optimized 475.00 seconds

Fig. 11. mpiBLAST Results

This shows that the results of a synthetic benchmark like IMB Ping Pong
can not be used directly to extrapolate figures, they are virtually the limit to
what can be achieved by an actual application.

4.5 Testbed

The experiments done as part of this work were done over 32 nodes with the
following bill of materials (Figure 12).

Component Description

Server Board Intel(R) S5000PAL

CPU Intel(R) Xeon(R) X5355 @ 2.66GHz

Ethernet controller Intel(R) 80003ES2LAN (Copper) (rev 01)

RAM Memory 4 GB DDR2 FB 667 MHz

Operating System Red Hat Enterprise 5.5 (Tikanga)

Network Driver Intel(R) PRO/1000 1.2.20-NAPI

Ethernet Switch Hewlett Packard HPJ4904A

Fig. 12. Compute Node Hardware and Software

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 128 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

5 Optimization Procedure

Figure 13 summarizes the complete optimization procedure. It is basically a se-
quence of steps involving checking and reconfiguring Ethernet drivers and system
services if required. Enabling TCP extensions for low latency is not included due
their negative consequences.

Fig. 13. Latency Optimization Procedure

5.1 Detailed Steps

The steps below include the purpose and an example of the actual command to
execute as required on Red Hat compatible systems. The pdsh3 parallel shell is
used to reach compute nodes at once.

Questions (1) helps to dimension the required work to optimize driver config-
uration to properly support network devices. Questions (2) helps to understand
what’s needed to properly configure system services.

1. Interrupt Moderation on Ethernet Driver

(a) Is the installed driver version the latest and greatest?

$ /sbin/modinfo -F version e1000e

1.2.20-NAPI

3 http://sourceforge.net/projects/pdsh

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 129 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

(b) Is the same version installed across all compute nodes?

$ pdsh -N -a ’/sbin/modinfo -F version e1000e’ | uniq

1.2.20-NAPI

(c) Are interrupt moderation settings in HPC mode?

pdsh -N -a ’grep "e1000e" /etc/modprobe.conf’ | uniq

options e1000e InterruptThrottleRate=0

2. System Services

(a) Is the firewall disabled?

pdsh -N -a ’service iptables status’ | uniq

Firewall is stopped.

(b) Is the firewall disabled at startup?

pdsh -N -a ’chkconfig iptables --list’

irqbalance 0:off 1:off 2:off 3:off 4:off 5:off 6:off

(c) Was the system rebooted after stopping firewall services?

$ uptime

15:42:29 up 18:49, 4 users, load average: 0.09, 0.08, 0.09

(d) Is the IRQ balancing service disabled?

pdsh -N -a ’service irqbalance status’ | uniq

irqbalance is stopped

(e) Is IRQ balancing daemon disabled at startup?

pdsh -N -a ’chkconfig irqbalance --list’ | uniq

irqbalance 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Once gathered all the information required to known if optimizations can be
applied, the following list can be used to apply configuration changes. Between
each change a complete cycle of measurement should be done. This include
contrasting old and new latency average plus their deviation using at least IMB
Ping Pong.

Disable IRQ Moderation

pdsh -a ’echo "options e1000e InterruptThrottleRate=0" >> \

/etc/modprobe.conf’

modprobe -r e1000e; modprobe e1000e

Disable IRQ Balancer

pdsh -a ’service irqbalance stop’

pdsh -a ’chkconfig irqbalance off’

Disable Firewall

pdsh -a ’service iptables stop’

pdsh -a ’chkconfig iptables off’

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 130 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

6 Conclusion

This work shows that by only changing default configurations the latency of a
Beowulf system can be easily optimized, directly affecting the execution time of
High Performance Computing applications. As a quick reference, an out-of-the-
box system using Gigabit Ethernet has around 50 µs of communication latency.
Using different techniques, it is possible to get as low as nearly 20 µs.

After introducing some background theory and supporting tools, this work
analyzed and exercised different methods to measure latency (IMB, HPL and
HPCC benchmarks). This work also contrasted those methods and provided
insights on how they should be executed and their results analyzed.

We identified which specific items have higher impact over latency metrics
(interrupt moderation and system services), using de-facto benchmarks and a
real-world application such as mpiBLAST.

6.1 Future Work

Running a wider range of real-world computational problems will help to un-
derstand the impact in different workloads. A characterization of the impact ac-
cording to the application domain, profiling information or computational kernel
might be useful to offer as a reference.

There are virtually endless opportunities to continue with the research on la-
tency optimization opportunities; among them components like BIOS, firmware,
networking switches and routers. An interesting opportunity are the RX/TX
parameters of Ethernet drivers that control the quantity of packet descriptors
used during communication.

Another option is to implement an MPI trace analysis tool to estimate the
impact of having an optimized low latency environment. At the moment there
are several tools to depict communication traces (Jumpshot4, Intel’s ITAC5),
but they do not provide a simulation of what would happen while running over
a different network environment. Having this approximation can be useful to
decide if it is worth to purchase specialized hardware or not.

Acknowledgments

The authors would like to thanks the Argentina Cluster Engineering team at the
Argentina Software Design Center (ASDC Intel) for their contributions.

References

1. T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V.
Packer, Beowulf: A parallel workstation for scientific computation, 1995.

4 http://www.mcs.anl.gov/research/projects/perfvis/software/viewers
5 http://software.intel.com/en-us/articles/intel-trace-analyzer

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 131 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

2. John Salmon, Christopher Stein, Thomas Sterling, Scaling of Beowulf-class Dis-
tributed Systems, Proceeding of the 1998 ACM/IEEE SC98 Conference, 1998.

3. William Gropp, Ewing Lusk and Thomas Sterling, Beowulf Cluster Computing with
Linux, Second Edition, 2003.

4. Qlogic, Introduction to Ethernet Latency 2011
5. Steen Larsen, Parthasarathy Sarangam, Ram Huggahalli, Architectural Breakdown

of End-to-End Latency in a TCP/IP Network, 2007.
6. Annie P. Foong, Thomas R. Huff, Herbert H. Hum, Jaidev P. Patwardhant, Greg

J. Regnier, TCP Performance Re-Visited, 2003.
7. Infiniband Trade Association, Infiniband Architecture Specification Release 1.2.1,

Jan 2008
8. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,

2009.
9. A. Petitet, R. C. Whaley, J. Dongarra and A. Cleary, HPL - A Portable Imple-

mentation of the High-Performance Linpack Benchmark for Distributed-Memory
Computers, 2008.

10. Jack J. Dongarra, Piotr Luszczek, Overview of the HPC Challenge Benchmark
Suite, 2006.

11. R. Jones, Netperf, http://www.netperf.org, 2007.
12. S. Bradner and J. McQuaid, IEEE RFC2544: Benchmarking Methodology for Net-

work Interconnect Devices, 1999
13. Intel Corporation, Interrupt Moderation Using Intel Gigabit Ethernet Controllers

Application Note, April 2007.
14. Intel Corporation, Assigning Interrupts to Processor Cores using an Intel(R)

82575/82576 or 82598/82599 Ethernet Controller, September 2009.
15. Intel Corporation, Improving Measured Latency in Linux for Intel(R) 82575/82576

or 82598/82599 Ethernet Controllers 2009.
16. H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, W. Feng, Massively Parallel Genomic

Sequence Search on the Blue Gene/P Architecture IEEE/ACM SC2008, November
2008.

HPCLatAm 2012, pp. 119-132 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 132 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

SMCV: a Methodology for Detecting Transient Faults in
Multicore Clusters

Diego Montezanti1,3, Fernando Emmanuel Frati1,3, Dolores Rexachs2, Emilio Luque2,
Marcelo Naiouf1 and Armando De Giusti1,3

1Instituto de Investigación en Informática LIDI, Facultad de Informática, UNLP
{dmontezanti,fefrati,mnaiouf,degiusti}@lidi.info.unlp.edu.ar

2Departamento de Arquitectura de Computadores y Sistemas Operativos, UAB
{dolores.rexachs,emilio.luque}@uab.es

3Consejo Nacional de Investigaciones Científicas y Técnicas

Abstract. The challenge of improving the performance of current processors is
achieved by increasing the integration scale. This carries a growing vulnerabil-
ity to transient faults, which increase their impact on multicore clusters running
large scientific parallel applications. The requirement for enhancing the reliabil-
ity of these systems, coupled with the high cost of rerunning the application
from the beginning, create the motivation for having specific software strategies
for the target systems. This paper introduces SMCV, which is a fully distributed
technique that provides fault detection for message-passing parallel applica-
tions, by validating the contents of the messages to be sent, preventing the
transmission of errors to other processes and leveraging the intrinsic hardware
redundancy of the multicore. SMCV achieves a wide robustness against transi-
ent faults with a reduced overhead, and accomplishes a trade-off between mod-
erate detection latency and low additional workload.

Keywords: transient fault, silent data corruption, multicore cluster, parallel sci-
entific application, soft error detection, message content validation, reliability.

1 Introduction

The challenge of improving the computation performance of current processors has
been achieved by increasing integration scale, which implies that the number of tran-
sistors within chips is growing. Additionally, the increment of the operation frequency
has caused a raise in the internal operation temperature. These factors, added to a
decrease in input power, cause processors to be more vulnerable to transient faults
[14,17].

A transient fault is the consequence of interference from the environment that af-
fects some hardware component in the computer. This can be caused by electromag-
netic radiation, overheating, or input power variations, and can temporarily invert one
or several bits of the affected hardware element (single bit-flip or multiple bit-flip)
[2].

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 133 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

The way in which each transient fault occurs is unique; any given transient fault
does not occur exactly the same never again throughout the lifespan of the system.
These faults are short-lived and do not affect the regular operation of the system, alt-
hough they can result in the incorrect execution of an application. Physically, they can
be located anywhere in the hardware of the system; in this context, the faults that
affect processor registers and logics are critical, since other parts of the system, such
as memories, storage devices and buses, have built-in mechanisms (such as ECCs1 or
parity bits) capable of detecting and correcting this type of faults [1].

From the perspective of the program being run, the fault can alter the status of a
hardware component that contains important information for the application. Depend-
ing on the time and specific location of the fault, it can affect application behavior or
results and, therefore, system reliability [3].

The impact of transient faults becomes more significant in the context of HPC.
Even if the mean time between faults (MTBF) in a commercial processor is of the
order of one every two years, in the case of a supercomputer with hundreds or thou-
sands of processors that cooperate to solve a task, the MTBF decreases as the number
of processors increases. Since the year 2000, error reports due to large transient faults
in large computers or server groups have become more frequent [1,20]. This situation
is worse with the advent of multicore architectures, which incorporate a great degree
of parallelism at hardware level. Also, the impact of the faults becomes more signifi-
cant in the case of longer applications, given the high cost of relaunching execution
from the beginning. These factors justify the need for a set of strategies to improve
the reliability of high-performance computation systems. In this way, the first step is
detecting the faults that affect application results but are not intercepted by the operat-
ing system and, therefore, do not cause the application to be aborted.

Traditionally, the existing proposals for providing transient fault tolerance have
been divided into those that tackle the problem from a hardware standpoint, and those
that do so from an application perspective.

Hardware-based techniques [8,9,11,13] aim to protect the various elements in the
processor by adding additional logics to provide redundancy. These are most widely
used in critical environments, such as flight systems or high-availability servers,
where the consequences of a transient fault can be disastrous.

Hardware-redundancy-based techniques, however, are inefficient in general pur-
pose computers. The cost of designing and verifying redundant hardware is high, and
the environmental conditions in which the processors are used and processor ageing
are the main causes for faults that cannot be predicted during the development stage.
On the other hand, in many applications (audio or video on demand), the consequenc-
es of a fault are not as severe, so there is no critical need to add thorough fault-
tolerance mechanisms [21].

The compromise between the achieved reliability and the resources involved
makes software-redundancy-based strategies [19] to be the most appropriate for gen-
eral purpose computational systems. The basic idea for detecting faults, called DMR2,

1 ECC: Error Correcting Code
2 DMR: Dual Modular Redundancy

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 134 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

consists in duplicating application computation. Both replicas operate over the same
input data and compare their outputs [8,11]. These techniques are characterized by
their low cost and flexibility, allowing various configuration options to adapt to spe-
cific application needs [4].

An important aspect of detection lies in the validation interval. If results are com-
pared only at the end, the fault that affects the application is detected with little addi-
tional workload, but the cost of relaunching the application from the beginning is
high, especially in the case of large parallel applications. On the other end, if partial
results are validated frequently, a high workload is introduced but the cost of re-
executing the application from the last consistent state is lower than in the previous
case. Therefore, a compromise must be reached between the detection interval and the
additional workload introduced.

There are numerous proposals for detection, based on duplication, designed for se-
rial programs, whose purpose is ensuring execution reliability. From this standpoint, a
parallel application can be viewed as a set of sequential processes that have to be
protected from the consequences of transient faults by means of the set of adopted
techniques.

In this context, SMCV (Sent Message Content Validation) is presented, which is a
proposal specifically designed for the detection of transient faults in scientific, mes-
sage-passing parallel applications that execute on the nodes of a multicore cluster.
SMCV uses software techniques that leverage the intrinsic redundancy existing in
multicores, replicating each process of the parallel application in a core of the same
processor. The detection is performed by validating the contents of the messages to be
sent using a moderate validation interval and adding a reduced additional workload
and a low overhead with respect to execution time. SMCV is a distributed strategy
that improves the reliability of the system (formed by the cluster and the parallel ap-
plication), isolating the error produced in the context of an application process and
preventing it from propagating to the others. The end goal is to ensure that the appli-
cations that finish do so with correct results.

The rest of this paper is organized as follows: in Section 2, the theoretical context
related to transient faults and their consequences in message-passing parallel applica-
tions is reviewed. In Section 3, related work is discussed. Section 4 describes this
work´s proposal and explains the choices made. In Section 5, the methodology pro-
posed is described in detail. Section 6 discusses the initial experimental validation. In
Section 7, future lines of work are described, and Section 8 presents the conclusions.

2 Background

2.1 Soft Errors. Classification.

The errors (external manifestations of an inconsistent internal status) produced by
transient faults are called soft errors. While transient faults affect system hardware,
soft errors can be observed from the perspective of program execution.

Figure 1 shows the classification of the possible consequences of transient faults
[24].

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 135 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Fig. 1. Classification of possible outcomes of a transient fault (adapted from [24])

The soft error rate (SER) of a system is given by [18]:

 ���	 � 	���	 � 	��		 � 	
� (1)

A Detected Unrecoverable Error (DUE) is a detected error that has no possibility
of recovery. DUEs are a consequence of faults that cause abnormal conditions that are
detectable on some intermediate software layer level (e.g. Operating System, commu-
nication library). Normally, they cause the abrupt stop of the application. For in-
stance, an attempt to access an illegal memory address (segmentation fault) or an
attempt to run an instruction that is not allowed (e.g. zero division).

A Silent Data Corruption (SDC) is the alteration of data during the execution of a
program that does not cause a condition that is detectable by system software. Its
effects are silently propagated through the execution and cause the final results to be
incorrect. From a hardware point of view, this is caused by the inversion of one or
several bits of a processor´s register being used by the application, causing the pro-
gram to generate faulty results.

A Latent Fault (LF) is a fault that corrupts data that are not read or used by the ap-
plication so, despite the fault effectively happening, it does not propagate through the
execution and has no impact on the results.

As a consequence, it is important that strategies are developed to intercept SDCs,
which are the most dangerous type of faults that can occur from the point of view of
reliability, because the program appears to be running correctly but, upon conclusion,
its output will be corrupted.

2.2 Transient Faults in Message Passing Parallel Applications

The occurrence of a transient fault that causes an SDC in a core that is running one
of the processes of a message-passing parallel application can have two different con-
sequences:

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 136 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

 ��		 � 	��		 � 	��	 (2)

A Transmitted Data Corruption (TDC) is an error in which the fault affects data that
are part of the contents of a message that has to be passed. If undetected, the corrup-
tion is propagated to other processes of the parallel application.

On the other hand, in the case of a Final Status Corruption (FSC), the fault affects
data that are not part of the contents of the message, but is propagated locally during
the execution of the affected process, corrupting its final state. In this case, the behav-
ior is similar to that of a sequential process.

Since a parallel application consists in the collaboration among multiple processes
to perform a task, its success is based on communicating the local computation results
obtained by each process to the others. Therefore, all faults that cause a TDC have a
high impact on the end results. On the other hand, the faults that cause an FSC are
related to the centralized part of the computation, and can therefore be detected by
comparing the end results. Following this line, it follows that, if the task is divided
among a larger number of processes, there will be a larger number of messages and a
consequent growth in the TDC portion.

In this context, SMCV proposes a detection scheme that is focused on those faults
that cause TDCs, and adds a final stage for comparing results to ensure system relia-
bility. The solution proposed is discussed in Sections 4 and 5.

3 Related Work

Fault Tolerance (FT) involves three phases: detection, protection and recovery. One
of the ideas most commonly used for detecting faults, proposed by Rotenberg [23], is
duplicating the execution of a process hosted in a given core, using another core that
works as redundancy. Both replicas operate on the same input data, compare their
partial results every given period of time, and only one of them writes to memory or
sends a message to another process [7,8,9,10,11].

Among the proposals that are based on software redundancy, code duplication,
with several variants, has been the idea most widely adopted in the field of transient
fault detection. SRT (Simultaneous & Redundant Threading) [5] is a first approxima-
tion to this, which consists in simultaneously running two replicas of a program as
separate threads, dynamically scheduling hardware resources between them, and
providing detection through input duplication and output comparison. In [6] CRT
(Chip-level Redundant Threading) is proposed, which is the application of this tech-
nique to CMP environments. SRTR (SRT with Recovery) [7] proposes improvements
to the detection mechanism and provides recovery through reexecution in the pipe-
line. CRTR (CRT with Recovery) [8] improves detection by separating execution
from threads to mask the communication latency between cores, and it applies the
recovery mechanisms proposed in [7] for a CMP environment. In [9], DDMR (Dy-
namic DMR) is proposed, a technique in which the cores that run the application in
redundant mode are dynamically associated to prevent defective cores from affecting
reliability, dealing with processing asymmetries and improving scalability. It intro-
duces the possibility of configuring the system to operate in redundant mode or using

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 137 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

the cores separately for processing. All these solutions involve some modification to
system hardware.

In [4], the Mixed Mode Multicore model is proposed, which allows running the ap-
plications that require reliability in redundant mode and, for applications that require
high performance, avoiding this penalty, thus providing flexibility through configura-
tion settings.

In [12], the proposal is obtaining a reduced version of the application by removing
inefficient computation and computation related to predictable control flow. The full
application and its reduced version are run in separate threads, providing redundancy
and advance results that speed up the execution of the application. The authors in [11]
propose selecting a core to carry out monitoring tasks over the processes that are run
in the other cores, cyclically verifying their states. As an alternative, more than one
core can be used for diagnosis operations, and the coverage level in case of faults can
be configured, as well as the maximum overhead allowed. Thus, there is no need to
produce a full replica of the program.

Among the solutions that are purely based on software, PLR [21] proposes the cre-
ation of a set of redundant processes for each application, being transparent to it. The
implementation allows the Operating System to intelligently manage available hard-
ware resources. This technique is designed for sequential programs.

In the context of these options, SMCV proposes a detection solution that is specific
to message-passing parallel applications, not requiring any hardware modifications
and leveraging the redundant resources that already exist in the multicore environ-
ment.

4 Work Hypothesis. Proposed Solution

In this section we present the rationale for SMCV. First, the usefulness of validating
message contents is explained, and the features provided by the methodology are
mentioned. Then, the leverage of redundant hardware resources by SMCV to increase
system reliability is described.

4.1 Validating Contents of Sent Messages

The detection methodology proposed in this paper is essentially based on the hypoth-
esis that, in a system formed by a multicore cluster that is running a message-passing
parallel application, most of the significant computation (understood as that which
impacts application results) will be part of the content of a message that is sent to
other application process at some point during execution. Faults can corrupt data,
flags, addresses or instruction code. However, if the corrupted value is significant for
the results of the application, this situation will eventually be reflected on message
incorrectness. Thus, of the total faults that can cause SDC, most will belong to the
TDC category. Therefore, to detect faults that corrupt important data, the contents of
the messages should be monitored. As regards the sequential phase, during which
there are no communications, the end results are verified to ensure reliability.

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 138 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

SMCV is a detection strategy based on validating the contents of the messages to
be sent. Each application process is duplicated, and both replicas compare all the
fields that form message contents before sending; the message is sent only if the com-
parison is successful.

This technique allows detecting all faults that cause TDCs; from the point of view
of the parallel application, SMCV ensures that any fault that affects the state of a
process is not propagated to other process of the application, which confines the ef-
fects of the fault to the local process. Faced with an error, SMCV currently notifies
the application and produces a safe stop. If a final comparison of the results is added
to detect faults in the serial portion, SMCV ensures system reliability and, therefore,
that the results of any application that finishes execution are correct.

Message contents are validated before sending the message. Thus, only one of the
replicas effectively sends the message, which means that no additional network
bandwidth is consumed. Taking into account that current networks have protocols that
ensure reliable communications, there is no need to verify the contents of the messag-
es upon reception (which would involve the transmission of two messages).

SMCV provides the following features:

• Each process and its replica are locally validated. The strategy is distributed in
each application process. It is decentralized.

• It prevents the propagation of errors among application processes. Also, it detects
errors in the serial part of the application by checking the end results.

• It introduces a low overhead in execution time, since only one comparison is added
for each byte of each outgoing communication and the end result (it should be not-
ed that the cost of comparison is lower than that of communication).

• A conservative detection strategy, designed for sequential programs, consists in
duplicating application computation; to protect program outputs, each memory
write operation is checked before being written [8]. Compared with this type of al-
ternatives, SMCV involves a reduced work overload. In this sense, it can be said
that it is a lightweight technique.

• When a fault is detected, the application is stopped, allowing relaunching the exe-
cution. There is no need to wait for the incorrect stop to re-execute, so SMCV nar-
rows error latency. This carries a gain in reliability, but also in time, which be-
comes particularly significant in scientific applications that can run for several
days.

• SMCV increases system reliability, understood as the number of times the applica-
tion ends correctly, because it is able to detect faults that cause TDC.

• It achieves a trade-off between detection latency, additional workload and involved
resources. SMCV allows latency in detection, since no verification is carried out
when the corrupt value is first used. This postpones detection until the time when
the altered data are part of the contents of the message. However, this implies a
lower additional workload than validating each write operation (which produces
low latency with high workload), and better leverages the resources than an only
final comparison (which involves duplicating all computation to detect only at the

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 139 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

end, producing high latency with low workload). The less frequent communication
between processes, the higher latency and the lower workload.

4.2 Leveraging Redundant Hardware Resources

Hardware manufacturer’s trend is to add more cores to processors. However, many
applications do not take advantage of all computation resources efficiently. On the
other hand, the increase in the amount of transient faults goes hand in hand with the
rise in the number of processing cores. As a consequence, the focus is no longer only
processor performance, but factors such as reliability and availability have become
more relevant. Therefore, the use of cores to carry out tasks related to fault tolerance
has advantages both as regards to leveraging these resources as well as adding a bene-
ficial feature for the system.

In this context, SMCV takes advantage of the intrinsic redundancy existing in mul-
ticores, using CMP cores to locate the replicas of the processes that perform useful
computation for the application. The output to main memory is the critical aspect for
selecting the cores that will be used to detect the faults that occur in the others. SMCV
tries to exploit the memory hierarchy of the CMP, so that the redundancy of the com-
putation that is executed in any given core is placed in another core with which some
level of cache is shared. Thus, many comparisons will be resolved at LLC3, minimiz-
ing main memory access.

5 Proposed Methodology Description

As already explained, SMCV is a software-centric strategy that can detect transient
faults in a multicore cluster on which a message-passing scientific parallel application
is being run. Upon detection of a fault, a user report is issued and the application is
aborted, thus increasing system reliability.

Figure 2 shows an outline of the proposed detection methodology. Each process in
the parallel application is run in a core of the CMP, and the computation it carries out
is internally duplicated in a thread, which in turn is executed in a core that shares
some cache level with the core running the original process. Thus, there is no need to
access the main memory, taking benefit from the hierarchy to solve comparisons.

Each process is run concurrently with its replica, which means that a synchroniza-
tion mechanism is required. When a communication is to be performed (point-to-
point or collective), it temporarily stops execution and waits for its replica to reach the
same point. Once there, all fields from the message to be sent are compared, byte to
byte, to validate that the contents calculated by both replicas are the same. Only if this
proves true, one of the replicas sends the message, ensuring that no corrupt data are
propagated to other processes.

3 LLC: Last Level Cache

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 140 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Fig. 2. SMCV methodology. (a) Proposed detection outline. (b) Behavior in presence of faults.

The recipient(s) of the messages stop upon reception and remain on hold. Once re-
ceived, it copies the contents of the message to its replica (also using memory hierar-
chy) and both replicas continue with their computation. Assuming that network errors
are detected and corrected at the network layer, the validated message reaches its
destination uncorrupted. By comparing the message before sending it, the message
can be sent only once. Were it be compared on reception, two copies of the message
would have to be sent through the network, which would be detrimental to bandwidth
use and network fault vulnerability.

Finally, when application execution finishes, the obtained results are checked once
to detect faults that may have occurred after communications ended, during the serial
part of the application.

5.1 Characterizing SMCV’s Additional Workload

Additional workload is related to computing amount added by the fault detection
strategy. This metric is useful to compare this methodology with other options. To
have an approach, a conservative strategy based on the validation of memory write
operations, similar to those used in sequential applications, has been analyzed. In this
case, parallel application processes are also duplicated in threads as described, but the
results of all write operations are validated (as opposed to validating only the contents
of the messages sent). This strategy can detect all faults, but with a significant in-
crease in computation amount.

The work overload WWV introduced by the write validation technique is given by:

�� 	� 	 �� � 	�. ��	. �	���� �		����� (3)

In Equation (3), S represents the number of write operations performed by the ap-
plication, excluding those corresponding to the messages it sends. It is assumed that
the application sends M messages of k elements (average) each. Csync and Ccomp repre-
sent the costs of a synchronization operation and a comparison operation, respective-
ly. The first factor in Equation (3) is therefore the total number of write operations
performed by the application. If all write operations are validated, each will involve a
synchronization operation and a comparison operation.

(a) (b)

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 141 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

On the other hand, the workload added by message validation, WMV is given by:

�� � �	. (���� 	+ �	. 	����)	 (4)	

In the case of message validation, for each message there is an only synchroniza-
tion operation and k comparisons (one for each element in the message).

The relation between the workload introduced by SMCV and a strategy that vali-
dates all write operations will then be given by:

��

�!
=

�	.		"#$%&	'	�	.		(.		"&)*+
,	.		�"#$%&	'	"&)*+�	'	�	.		(.	"#$%&	'	�	.		(.		"&)*+	

 (5)

The quotient of Equation (5) is always a number lower than 1, which means that
the additional computation overload for validating messages is lower than that for
validating all write operations.

The analysis was carried out for one of the processes that communicate all its re-
sults. In the case of a process that performs serial computing, the overload for com-
paring the end results is added, but this is the same in both techniques. Therefore, this
analysis is sufficiently general and representative of various situations.

It can be concluded that SMCV is a lightweight strategy that adds a reduced work-
load versus more conservative strategies that will detect faults that have no impact on
the results of the application.

6 Initial Experimental Validation

The SMCV methodology has been assessed to determine its detection efficacy and the
overhead introduced regarding to execution time. The results obtained are shown in
this section.

6.1 Testing SMCV’s Effectiveness

Tests were run with the detection tool to test its efficacy. The application used for the
tests was a parallel matrix multiplication (C = A * B), programmed following the
Master/Worker paradigm with 4 processes (the Master and 3 Workers), with the Mas-
ter also taking part of the computation of the C matrix [22]. The Master process di-
vides matrix A among all Workers and sends each one the chunk assigned to it, keep-
ing a chunk for itself to participate in the calculation of the resulting matrix. Then, the
Master sends each Worker a copy of the entire matrix B. After this, all processes
compute their corresponding chunk of matrix C and, in the final stage, send the Mas-
ter the part that they have calculated. The Master builds matrix C from what the
Workers sent and its own computation. All messages used are non-blocking. The
communications library used is OpenMPI.

All the experiments were run on a cluster with 16 blades, each one having 2 Quad
Core Intel Xeon 5405 2GHz processors, 12 MB of L2 cache and 2 GB of main

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 142 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

memory. For this first test, an only blade was used, with the 4 processes and their
replicas mapped to the 8 cores of the blade.

To implement SMCV, a part of an MPI communication primitive’s library was de-
veloped, with the added functionality of fault detection by comparison upon sending,
message contents duplication upon reception, and concurrency control between repli-
cas. The Pthreads library was used for creating the replicas, and replica synchroniza-
tion was done with semaphores.

The SMCV strategy was applied to the described application, replicating each of
its processes in a thread as explained in Section 5 (for this, the source code of the
application is required). The experiment consisted in injecting faults at various points
of the application by means of a debugging tool. To do this, a breakpoint is inserted at
a certain point of the execution of one of the application processes; the value of a
variable is modified, and computation is resumed, so that the consequence of the fault
at the end of the execution can be analyzed (this technique simulates a real fault in a
processor register, since for data corruption to become apparent, it must be observable
as a difference between the memory states of the replicas).

Even though a transient fault can randomly occur at any point during execution,
significant processing time points were selected for the simulated injection, both for
the Master and the Workers.

The strategy was capable of detecting all faults that affected message contents
(TDC), as expected, notifying and aborting the application so that the corruption was
not able to propagate. Thus, all Workers processing is protected. On the other hand,
the faults that occurred in the data kept by the Master for local computation, and those
that were produced after the partial results from all Workers had been collected by the
Master in the last stage (corresponding to the FSC portion) were detected while com-
paring the end results.

6.2 Overhead Measurements

The overhead is a metric of the incidence of the detection tool on system perfor-
mance, in the absence of faults. The overhead can be determined as the extra execu-
tion time implied by adding the SMCV strategy to the original application, on the
architecture described above. The time added by SMCV is a consequence of the du-
plication of each process, the synchronization between replicas, the comparison car-
ried out before each message is sent, the duplication of the messages received, and the
final verification of the results.

Experiments were carried out by applying the SMCV methodology to the matrix
multiplication application with 2, 4 and 8 processes (including the Master), with
square matrix sizes of 512, 1024, 2048, 4096 and 8192 elements. The mapping be-
tween processes and processors was made in a way that ensures the same conditions
of execution with and without the SMCV strategy, in order to directly compare the
execution times. Up to 4 processes, an only blade was used, running application pro-
cesses and its replicas using the all 8 cores. In the case of 8 processes, two blades
were used, each of them running 4 processes of the application (without SMCV) and
4 processes and its replicas (8 cores) with SMCV.

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 143 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Each experiment was run five times, and the results were averaged to improve sta-
bility. The standardized results, with respect to the execution time of the application
with no fault detection, are shown in Table 1 and Figure 3.

Tam (N) 2 4 8

512 0,87% 14,24% 55,11%

1024 0,01% 1,63% 21,40%

2048 0,39% 1,61% 10,05%

4096 -0,14% 0,91% 4,74%

8192 0,17% 0,92% 2,45%

Procesos

Table 1. Overhead measurements

Fig. 3. SMCV’s overhead in execution time

As it can be observed, the overhead decreases as the size of the problem grows up.
This is because, with larger matrixes, the application spends more time computing.
However, for any given number of processes, the number of messages remains con-
stant. Therefore, synchronization, comparison and message contents duplication times
are overshadowed by processing time. On the other hand, small matrixes require a
short computation time and therefore all communication-related detection activities
become more relevant.

Similarly, it can be seen that, for any given matrix size, overhead increases with
the number of processes. This is explained by the fact that the number of messages
(and therefore, synchronizations, verifications and copies) increases with the number
of processes.

The case of 2 processes was the one that presented a wider dispersion between dif-
ferent repetitions of the experiment. A factor of randomness is present; inclusive, in
the case of N = 4096, the incorporation of SMCV appears to perform better than the
original application. However, with the precision of the obtained measurements, dif-
ferences below 1 %, which occur in all cases, are considered negligible.

Based on the experiments carried out, it can be concluded that, when the size of the
problem increases but the number of processes remains constant, the overhead is sig-

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 144 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

nificantly low. This would mean that, in real applications with high performance re-
quirements, handling large amounts of data, similar overheads can be obtained.

7 Future Work

This work is part of a more extensive proposal whose purpose is providing transi-
ent fault tolerance for systems formed by scientific, message-passing parallel applica-
tions that are run on multicore cluster architectures.

Fault tolerance includes the phases of detection, protection, and recovery. In the
context of permanent faults, the existing techniques most widely used are checkpoint-
ing and event log for protection, and rollback-recovery [24]. The proposal consists in
integrating the transient fault detection methodology to the protection and recovery
strategies available for permanent faults to provide transient fault tolerance. This
means that there is no need of using triple modular redundancy (TMR) [16] with vot-
ing mechanisms to detect and recover from a transient fault. Also, since transient
faults do not require system reconfiguration, recovery can be achieved by re-
executing the same core of the failed process.

In the road towards achieving this goal, the following lines are open:

1. Perfecting the detection strategy:

─ Expanding the experimental validation. A test that is more thorough than the one
carried out so far requires the use of the methodology with standard applications.
In the next stage, NAS benchmarks will be used, which are widely used in the sci-
entific environment to measure the performance of parallel machines because they
are representative of the type of computation most frequently made. These bench-
marks respond to other parallel programming paradigms, and also have the ad-
vantage of providing self-verification functions of the results, which is useful for
validating the detection strategy. In this sense, the integration with fault injection
tools is desirable, to improve validation capabilities by means of extensive random
fault injection campaigns. The overhead obtained with these applications will be
measured.

─ Achieving transparency for the application. At the current development level,
SMCV's duplication process, based on threads, requires minor changes in the ap-
plication code (and recompiling) to support the location of the replica in shared-
memory with the original process and the use of the communications library with
extended functionality. To obtain this transparency, replication must be imple-
mented at the level of processes rather than threads.

─ Optimizing the methodology to improve the trade-off between reliability, over-
head, additional workload, detection latency (related to the recovery cost) and re-
source utilization. A detailed characterization will allow suggesting new ways of
improving performance, considering the possibility of configuring the robustness
level based on application coverage needs or maximum overhead permitted
[6,11,13].

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 145 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

2. Providing full tolerance to SDC, restoring the system to its state previous to the
fault:

In a following stage, the distributed detection strategy (already optimized) will be
integrated with fault tolerance architectures oriented to permanent faults. The goal is
obtaining a system capable of tolerating both permanent and transient faults. In this
sense, integration with RADIC [15] will be attempted; RADIC is a transparent, scala-
ble, flexible, and fully distributed architecture that provides fault tolerance through
non-reliable elements and can recover after a permanent fault in a node. The aim is to
leverage the methodology provided by RADIC for permanent faults (the rollback
recovery mechanism, with non-coordinated checkpoints and message logs), and add
transient fault tolerance. The resulting system will have to be tested to determine the
reliability obtained, transparency for the application, resource utilization, overhead in
absence of faults, and degradation in presence of faults.

8 Conclusions

In this paper, SMCV is presented, which is a transient fault detection methodology,
purely implemented through software and specifically designed for scientific, mes-
sage-passing parallel applications that are run on multicore clusters. Under the prem-
ise that in this type of applications, all information that is relevant for the end results
is transmitted among the processes that are part of it, the SMCV strategy is based on
validating the contents of the messages to be sent and comparing the end results to
achieve a compromise between a high level of robustness against faults and the intro-
duction of a low execution time overhead, consequence of the non-detection of the
faults that would normally not affect the results. Also, it introduces a reduced addi-
tional workload versus the more conservative strategies that validate all write-to-
memory operations, similar to the ones used in sequential applications.

References

1. Mukherjee, S. S., Emer, J., Reinhardt, S. K.: The Soft Error Problem: An Architectural
Perspective. HPCA '05: Proceedings of the 11th International Symposium on High-
Performance Computer Architecture, 243 – 247 (2005)

2. Wang, N. J., Quek, J., Rafacz, T. M., Patel, S. J.: Characterizing the Effects of Transient
Faults on a High-Performance Processor Pipeline. DSN '04: Proceedings of the 2004 In-
ternational Conference on Dependable Systems and Networks, 61 – 70 (2004)

3. Mukherjee, S. S.: Architecture Design for Soft Errors. Morgan Kaufmann (2008)
4. Lesiak, A., Gawkowski, P., Sosnowski, J.: Error Recovery Problems. Dependability of

Computer Systems, 2007. DepCoS-RELCOMEX '07. 2nd International Conference on,
270 – 277 (2007)

5. Shivakumar, P., Kistler, M., Keckler, S. W., Burger, D., Alvisi, L.: Modeling the Effect of
Technology Trends on the Soft Error Rate of Combinational Logic. DSN '02: Proceedings
of the 2002 International Conference on Dependable Systems and Networks, 389 – 398
(2002)

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 146 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

6. Wells, P. M., Chacraborty K. Sohi G. S.: Mixed-Mode Multicore Reliability. ASPLOS
2009. SESSION: Reliable systems II, 169 – 180 (2009)

7. Reinhardt, S. K., Mukherjee S. S.: Transient Fault Detection via Simultaneous Multi-
threading. Proceedings of the 27th annual International Symposium on Computer Archi-
tecture, Vancouver, British Columbia, Canada, 25 – 36 (2000)

8. Kontz M., Reinhardt S. K., Mukherjee S. S.: Detailed Design and Evaluation of Redun-
dant Multithreading Alternatives. Proceedings of the 29th Annual International Symposi-
um on Computer Architecture (ISCA'02). Anchorage, Alaska, 99 – 110 (2002)

9. Vijaykumar T. N., Pomeranz, I. Cheng, K.: Transient-Fault Recovery using Simultaneous
Multithreading. Proceedings of the 29th Annual International Symposium on Computer
Architecture, Anchorage, Alaska. Session 3: Safety and Reliability, 87 – 98 (2002)

10. Gomaa M., Scarbrough C., Vijaykumar T. N., Pomeranz, I.: Transient-Fault Recovery for
chip Multiprocessors. Proceedings of the 30th Annual International Symposium on Com-
puter Architecture (ISCA ´03), San Diego, California, 98 – 109 (2003)

11. Golander A., Weiss S., Ronen R.: Synchronizing Redundant Cores in a Dynamic DMR
Multicore Architecture. IEEE Transactions on Circuits and Systems II: Express Briefs
Volume 56, Issue 6, 474 – 478 (2009)

12. Sundaramoorthy K., Purser Z., Rotenberg E.: Slipstream Processor: Improving both Per-
formance and Fault-tolerance. ACM SIGPLAN Notices Volume 35, Issue 11, 257 – 268
(2000)

13. Barr A. H., Pomaranski K. G., Shidla D. J.: United States Patent Application Publication
US 2005/0102565 A1: Fault Tolerant Multicore Microprocessing (2005)

14. Gramacho, J., Rexachs del Rosario, D., Luque, E.: A Methodology to Calculate a Pro-
gram´s Robustness against Transient Faults. PDPTA 2011, 645 – 651 (2011)

15. Santos, G., Duarte, A., Rexachs del Rosario, D., Luque, E.: Providing Non-stop Service
for Message-Passing Based Parallel Applications with RADIC. Euro-Par 2008, 58 – 67
(2008)

16. Mathur, F., Avizienis, A.: Reliability analysis and architecture of a hybrid-redundant digi-
tal system: generalized triple modular redundancy with self-repair. AFIPS '70 (Spring)
Proceedings of the May 5-7, 1970, Spring Joint Computer Conference (1970)

17. Mukherjee, S.; Weaver, C.; Emer, J.; Reinhardt, S., Austin, T.: A systematic methodology
to compute the architectural vulnerability factors for a high-performance microprocessor.
MICRO-36.Proceedings. 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, 29 – 40 (2003)

18. Weaver, C., Emer, J., Mukherjee, S. S., Reinhardt, S. K.: Techniques to Reduce the Soft
Error Rate of a High-Performance Microprocessor, ACM SIGARCH Computer Architec-
ture News, Volume 32, Issue 2, page 264 (2004)

19. Reis, G. A., Chang, J., Vachharajani, N., Rangan, R., August, D. I.: SWIFT: Software Im-
plemented Fault Tolerance, in Proceedings of the international symposium on Code gen-
eration and optimization, Washington DC, USA, 243–254 2005

20. Bronevetsky, G., Supinski, B.: Soft error vulnerability of iterative linear algebra methods.
ICS ’08: Proceedings of the 22nd annual international conference on Supercomputing.
New York, NY, USA: ACM, 155 – 164 (2008)

21. Shye, A., Blomstedt, J., Moseley, T., Reddi, V. J., Connors, D. A.: PLR: A software ap-
proach to transient fault tolerance for multicore architectures, Dependable and Secure
Computing, IEEE Transactions on, Volume 6, Issue 2, 135 – 148 (2009)

22. Leibovich F., Gallo S., De Giusti L., Chichizola F., Naiouf M., De Giusti A.: Compara-
ción de paradigmas de programación paralela en cluster de multicores: Pasaje de mensajes

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 147 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

e híbrido. Un caso de estudio. Proceedings of XVII Congreso Argentino de Ciencias de la
Computación (CACIC 2011), 241 – 250 (2011)

23. Rotenberg E.: AR-SMT: A Microarchitectural Approach to Fault Tolerance in Micropro-
cessors. Proceedings of the 29th Annual International Symposium on Fault- Tolerant
Computing, 84 – 91 (1999)

24. Rexachs, D., Luque, E.: High Availiability for Parallel Computers. JCS&T Vol. 10 No. 3,
110 – 116 (2010).

HPCLatAm 2012, pp. 133-148 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 148 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Evolutionary Statistical System for applying in
Forest Fire Spread Prediction?

Germán Bianchini, Miguel Mendez-Garabetti and Paola Caymes-Scutari

Laboratorio de Investigación en Cómputo Paralelo/Distribuido (LICPaD)
Departamento de Ingenieŕıa en Sistemas de Información, Facultad Regional Mendoza

- Universidad Tecnológica Nacional. (M5502AJE) Mendoza, Argentina

Abstract. Several propagation models have been developed to predict
forest fire behaviour. They can be grouped into empirical, semi-empirical,
and physical models. These models can be used to develop simulators and
tools for preventing and fighting forest fires. Nevertheless, in many cases
the models present a series of limitations related to the need for a large
number of input parameters. Furthermore, such parameters often have
some degree of uncertainty due to the impossibility of measuring all of
them in real time. Therefore, they have to be estimated from indirect
measurements, which negatively impacts on the output of the model.
In this paper we present a method which combines Statistical Analysis
with Parallel Evolutionary Algorithms (taking advantage of the compu-
tational power provided by High Performance Computing) to improve
the quality of model’s output.

1 Introduction

Different propagation models have been developed to predict fire behaviour.
They can be classified into empirical, semi-empirical, and physical models [8].
The probable fire behaviour is predicted in empirical models from average condi-
tions and accumulated knowledge obtained from laboratory and outdoor exper-
imental fire or from historical fires. Semi-empirical (semi-physical or laboratory
models) are those models based on a global energy balance and on the assump-
tion that the energy transferred to the unburned fuel is proportional to the energy
released by the combustion of the fuel; one of the most important among these
models is the pioneering work of Rothermel (1972 and 1983) [21, 22]. Finally,
physical (theoretical or analytical) models are based on physical principles and
have the potential to accurately predict the parameters of interest over a broader
range of input variables than empirically based models do. These models can be
used to develop simulators and tools for preventing and fighting forest fires.
Some old and current examples are Behave-Plus [1], FARSITE [9], FIREMAP
[2], FireStation [15], WRF-Fire [16], XFire [14], etc.

According to Fons [10] the relevant factors that affect the rate of spread and
shape of a forest fire front are the fuel type (type of vegetation), humidity, wind
? This work has been supported by Conicet under project PIP 11220090100709, by

UTN under project UTN1194 and by ANPCyT under project PICT PRH-00242.

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 149 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

speed and direction, forest topography (slope and natural barriers), and fuel
continuity (vegetation thickness). Therefore, models require a set of input para-
meters, including vegetation type, moisture contents, wind conditions, and so on,
and they provide the evolution of the fire line in the successive simulation steps.
However, the result obtained after the direct application of a simulator (known
as Classical Prediction and explained in Section 2) usually differs from reality
because of the difficulty of providing accurate input values to the model. Given
this uncertainty, we propose an alternative method, that tries to determine the
possible fire behaviour based on Statistical Analysis [19] and Parallel Evolution-
ary Algorithms (PEAs) [18] as optimization method. This method corresponds
to an improvement of a previous methodology based on Statistical Analysis and
High Performance Computing, which has been modified by the combination
with Evolutionary Algorithms to improve the prediction level and reduce the
execution time.

Clearly, the simulation of the spread of forest fires is a challenge from the
computational point of view, given the complexity of the models involved, the
need for efficient numerical methods and resource management for results. In
this context, the method presented in this paper is an important tool for the
prevention and prediction of forest fires, as it provides more complete information
about the potential fire behaviour. This is a general method which could be
applied on different propagation models (e.g. floods, snow avalanches, landslides,
etc.), but here we only present its application to forest fire prediction.

In the remaining sections of this paper we describe the direct use of a simula-
tor in section 2 (known as Classical Prediction); section 3 shows the predecessor
of the current method (Statistical System for Forest Fire Management - S2F 2M
[4, 5]) and section 4 describes the new methodology, implemented in a system
called Evolutionary Statistical System (ESS) [3]. In section 5 we compare both
methods using a set of real cases of forest fires and also we comment on the
obtained results related to the execution time and the speed-up obtained when
we work on a cluster computer. Finally, we present the main conclusions.

2 Classical Prediction

Classical Prediction approach is depicted in Fig. 1. In this scheme, FS corre-
sponds to the underlying fire simulator, which will be seen as a black box. RFL0
is the real fire line at time t0 (initial fire front), whereas RFL1 corresponds to
the real fire line at t1. If the prediction process works, after executing FS (which
should be fed with the corresponding input parameters and RFL0) the predicted
fire line at time t1 (PFL) should coincide with the real fire line (RFL1).

As we mentioned previously, models require static parameters (information
about topography), parameters that can change very slowly (type of vegetation),
parameters that can change frequently (moisture content), and parameters that
are completely dynamic (like wind conditions). The simulator will not work
properly without this set of parameters. The precision of these parameters is
a very important point in prediction of the behaviour, and in many cases it is

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 150 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

RFL0
 RFL1

FS
 PFL

Input Parameters

t = t

0

t = t

1

time

Fig. 1. Diagram of Classical Prediction of forest fire propagation (FS: Fire Simulator;
PFL: Predicted Fire Line; RFLX: Real Fire Line on time X)

impossible to carry out some types of measurements, particularly in a real fire
situation.

Generally, the obtained prediction using this approach does not match the
reality. One reason for the discrepancy between real and simulated propagation
stems from the difficulty of feeding the model with accurate input values. Uncer-
tainties in the input variables can have a substantial impact on the result errors
and should be considered.

In this context, the prediction of the fire line behaviour cannot be considered
to be reliable for two reasons: on the one hand, the difficulties in making an
accurate estimate of the parameters and, on the other hand, the resulting pre-
diction is based on a single simulation, which does not constitute a reasonable
basis for making a decision given the uncertainty of the parameters.

3 Statistical Method for Uncertainty Reduction

The statistical method for uncertainty reduction [4–6] has been the result of
the combination of various research projects. This method has as its bases the
concepts of statistical analysis and distributed computing. Basically, the method
finds a pattern of behaviour of the model without performing a specific analysis
of each scenario (where a particular setting of the input parameter values de-
fines an individual scenario). All the possible scenarios are discretely generated
considering a certain domain by a factorial experiment [19] and the model is
evaluated with each set of values. The results are combined to determine the
trend in the behaviour of the model, adjusting to the current observation of it.
The pattern found is then taken to predict the next step.

This method requires a large number of operations, and therefore is very time
demanding. For this reason, we applied a parallel computing scheme for its im-
plementation. Because of this, we used multiple computational resources working
in parallel to reduce the time. Keeping in mind the nature of the problem, we
applied a Master-Worker paradigm [12, 17], because the problem we face can be
divided into multiple partitions and the same calculations can be applied over

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 151 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

each data subset. Therefore, we face a problem that can be solved using domain
decomposition: a main processor can calculate each combination of parameters
and send them to a set of Workers. These Workers carry out the simulation in
parallel, taking into account several combinations of parameters, and return the
partial results to the Master, which aggregates all these individual results at
each iteration. Also, the Master process is responsible for the statistical stage
and it is in charge of the remaining prediction technique.

A scheme of a whole prediction system is presented in Fig. 2. As we can
see, the process of prediction needs a calibration stage at the beginning (time
period that goes from t0 to t1) to firstly obtain a Kign value (Key Ignition value)
to start up the prediction chain. For every i from 1 to n, both the prediction
operation for time ti and the calibration stage to obtain the Kign to be used
in time ti+1 will overlap at time ti. This situation is the one depicted in Fig.
2. As can be observed, the output generated by the SS box (Statistical Stage)
is used for a double purpose. On the one hand, the probability maps are used
as an input of the SK box (Search Kign) to search for the current Kign, which
will be used at the next prediction time. In this stage, a Fitness Function (FF)
is used to evaluate the probability map. On the other hand, the output of SS
box enters the Fire Prediction box (FP), which will be in charge of generating
the prediction map taking into account the Kign evaluated at previous time.
This process will be repeated during the execution as the system is fed with new
information about the fire situation.

RFL
i

FS
 PFL

t = t

i

FP
SS

SK
 FF

CS

K

ign_i

RFL
0
 RFL
1

SS
FS

Input

Parameters

t = t

0
 t = t

1

time

Input

Parameters
SK
 FF

CS

K

ign_i-1

K

ign_1

Fig. 2. Detailed diagram of S2F 2M (FS: Fire Simulator; CS: Calibration Stage; SS:
Statistical Stage; SK: Search Kign Stage; FF: Fitness Function; FP: Fire Prediction;
PFL: Predicted Fire Line; RFLX: Real Fire Line at time X)

Although the statistical method can be used to solve various Grand Challenge
Problems, as a case of study, the method has been applied on a behavioural model
of forest fire propagation. As a result, we developed a system called Statistical
System for Forest Fire Management (S2F 2M), which is the product of the com-
bination of applying the proposed method with the simulator fireSim (fireSim is
the implementation of a fire behaviour simulator based on the Rothermel model

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 152 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

[21] and implemented with the library fireLib [7]). For a detailed description of
the method, we suggest the reader to consult [4, 5].

4 Evolutionary Statistical System

The improvement and modification of the statistical method discussed in the
previous section has resulted in a new method that combines the strength of
three components: uncertainty reduction, evolutionary algorithms and paral-
lelism, that is why the new method has been called Evolutionary Statistical
System [3]. The improvement of the method is related to the introduction of
features of PEAs in the calibration step of the statistical method. As we seen
in the previous section, the statistical phase of the methodology includes all the
results of a series of cases that arise as some combination of the possible re-
sulting values (within valid ranges) of the parameters that exhibit uncertainty.
Clearly, there is a certain percentage of cases that do not contribute significant
values to the global result, whether they are now redundant, or because they
are too far from reality (and thus, could be considered as negative cases that
ultimately degrade the result provided by the method). To avoid this problem is
that we have decided to apply the Evolutionary Algorithms (EAs), whose basis
is explained in more details in the next section.

4.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) mimic the concept of natural biological evolution:
they operate on a population of potential solutions applying the principle of
survival of the fittest [11]. In each iteration EAs create a new set of approaches
through a process of selecting individuals according to the level of fitness for the
problem domain (through the fitness function that quantifies this feature) and
perform a recombination of them using operators that mimic natural genetics.
This process leads to the evolution in the population of individuals that have
best adapted to the environment just as happens in natural adaptation.

The EAs model natural processes such as selection, crossover, mutation, mi-
gration, locality and the notion of neighbourhood, working on populations of
individuals rather than on unique solutions. Thus, the search can be performed
in parallel, thus providing a number of potential solutions instead of one. This
scheme is known as Parallel Evolutionary Algorithms (PEAs). According to the
amount of populations involved in the algorithm, the treatment and the op-
erators PEAs can be classified in three broad groups: Unique Population and
Parallel Evaluation, Unique Population and Overlapped Neighbourhoods, and
Multiple Populations and Migration. In this work, we consider the first group.

In each generation the fitness of each individual in the population is evalu-
ated in parallel. Multiple individuals are stochastically selected from the current
population (depending on fitness), and modified (by recombination or by ran-
dom mutation) to form a new population. The fitness is defined in terms of the
genetic representation and measures of quality of the solution represented.

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 153 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

The execution of the PEA may finalize by various criteria. One method is
to finish after a predetermined number of iterations. Another way is to check
whether the measure of population quality has improved or not after a certain
number of generations. Another is to finish when all individuals are identical,
which can only happen when not using the mutation.

Evolutionary algorithms are a powerful tool for solving different kinds of
problems [20]. However, sometimes this type of methodology iterates for a long
time and does not converge or converges to a local optimum. This is one of the
reasons why it is interesting combine the use of evolutionary methods with paral-
lel computing. However, given the use of evolutionary algorithms in optimization
problems, where they have found very good results, we propose the application
of this methodology in combination with statistical methods, as discussed in the
following section.

4.2 Methodology of the Evolutionary Statistical System

The Evolutionary Statistical System (ESS), classified as Data-Driven methods
with Multiple Overlapping Solution, is an improvement of the S2F 2M method
previously commented. It combines the original uncertainty reduction method
implemented in S2F 2M with the advantages that offer the Parallel Evolutionary
Algorithms (PEAs), dealing with a population of scenarios relevant to the study.
ESS, like its predecessor, is based on statistics, mainly on the concept of factorial
experiment [19], where the combination of several factors (input parameters)
defines a scenario. In this case, each scenario is represented by an individual in
a population of possible solutions.

RFL
0
 RFL
1

FS
Parameters

Vectors

t = t

1

t = t

i

time

OS

SS

SK
 FF

CS

PEA

RFL
i

PFL
FP
OS

Evolved

 Population

SS

SK
 FF

CS

K

ign_1

K

ign_i

t = t

0

K

ign_i-1

Fig. 3. Diagram of ESS (FS: Fire Simulator; PEA: Parallel Evolutionary Algorithm;
OS: Optimization stage; SS: Statistical System; SK: Search Kign; FF: Fitness Function;
CS: Calibration stage; FP: Fire Prediction; PFL: Predicted Fire Line, RFLX: Real Fire
Line on time X)

A scheme of ESS is presented in Fig. 3. As can be observed, the system is
divided in two general stages: an Optimization Stage (OS) that implements the

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 154 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

parallel evolutionary algorithm (PEA box), and the Calibration Stage (CS) that
is in charge of the statistical method. OS iterates until the population reaches a
certain level of quality. For each individual FS and the fitness are calculated in
parallel. Then, every individual will be included in the Statistical System (SS
box). Similarly to S2F 2M , the output of SS (a probability map) has a double
purpose. On the one hand, the probability maps are used as the input of the
SK box (Search Kign) to search for the current Kign (a key number used to
make a prediction), which will be used at the next prediction time. In this stage,
a Fitness Function (FF) is used to evaluate the probability map. On the other
hand, the output of SS box enters the Fire Prediction box (FP). FP will be in
charge of generating the prediction map taking into account the Kign evaluated
at previous time. All this process will be repeated during the execution as the
system is fed with new information about the fire situation.

The architecture of the ESS is based on the Master-Worker paradigm [12, 17]:
In each iteration the Master distributes an individual per Worker; the simulation
of the model and the evaluation of fitness function are applied over each individ-
ual (tasks carried out by the Workers), returning the results to the Master. This
process is repeated until every individual in the population is treated. Finally
the Master evolves the population, aggregates the partial results and makes the
prediction for each time step.

5 Experimental Results

This section compares the results obtained after applying the original statistical
method (S2F 2M) and the Evolutionary Statistical System (ESS) described in
this paper. To that end we have used four cases of controlled burns. They were
made in the field (Fig. 4), particularly in a hill of Serra de Lousã (Gestosa,
Portugal). The burns were part of the SPREAD project [23]. These experiments
were very useful to collect experimental data, to support the development of new
concepts and models, and to validate existing methods or models in various fields
of fire management. We have not included the results of the classical method
because the values obtained are low and do not contribute information to this
work. In addition, previous studies have shown that the values obtained by
applying the statistical method surpasses the quality of the prediction achieved
by the classic approach [5].

Along the progress of burning, discrete steps were defined to represent the
progress of the fire front. Therefore, we consider various time instants t0, t1, t2...
etc. In Table 1 can be appreciated the characteristics (size and slope) of the land
used for each experiment. In order to gather as much information as possible
about the fire-spread behaviour, a camera recorded the complete evolution of
the fires. The videos obtained were analyzed and several images were extracted
every certain period of time. From the images, the corresponding fire contours
were obtained and converted into a suitable format so they could be interpreted
by the methods.

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 155 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

Fig. 4. Real fire during the burns in the Gestosa area.

Table 1. Dimensions and slopes of the plots used in experiments.

Experiment Width (m) Length (m) Slope (◦)
1 58 50 21
2 89 91 21
3 95 123 21
4 20 30 6

In experiments 1 and 2 the cell size was 1 m2, and in experiments 3 and 4
the cell size was 0.333 m2. The remaining parameters such as wind conditions
and moisture content were variable.

5.1 The fitness function

It is necessary to define a criterion to compare the prediction resulting from
each method with the real situation. To evaluate the system response we have
defined a fitness function. Since the simulator uses an approximation based on
cells, the fitness function is defined as a quotient. The following equation shows
the expression:

Fitness =
(#cells

⋂−#IgnitionCells)
(#cells

⋃−#IgnitionCells)

where #cells
⋂

represents the number of cells in the intersection between the
simulation results and the real map, #cells

⋃
is the number of cells in the union

of the simulation results and the real situation, and #IgnitionCells represents
the number of burned cells before starting the simulation.

A fitness value equal to one corresponds to the perfect prediction because it
means that the predicted area is equal to the real burned area. On the other
hand, a fitness equal to zero indicates the maximum error because, in this case,
our experiment did not coincide with reality at all.

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 156 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

5.2 Comparison

According to the information already known about the experiments and the
models of Rothermel [21] for some of the parameters, certain ranges have been
specified (in particular those parameters that exhibit uncertainty). A part of this
information has been measured during the experiment, and the remainder has
been taken from standard values used by BehavePlus [1].

The experiments 1, 3 and 4 belong to cases of fires started at the base of the
field through pyrotechnic devices in a linear way. Meanwhile, in experiment 2,
the fire originated in a single point. After execution of the methods, the fitness
values found are shown in Figure 5. We can see that in all four cases, ESS
performs better compared to the original version of the method. However, at
certain times, the values found may be similar or even slightly lower than the
results of the original method (this happens in Experiment 2 at minute 7.5 and
in Experiment 3 at minute 12).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

minute

fi
tn

e
s
s

S2F2M
 ESS

minute

fi
tn

e
s
s

fi
tn

e
s
s

fi
tn

e
s
s

Experiment 3

4
 5
 6
 7
 8
 9
 10

Experiment 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

7,5
 10
 12,5

Experiment 2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

6
 7
 8
 9
 10
 11
 12

minute

6
 7
 8
 9
 10

minute

Experiment 4

0

0,2

0,4

0,6

0,8

1

(t

2

)
 (t

3

)
 (t

4

)
 (t

5

)
 (t

2

)
 (t

3

)
 (t

4

)

(t

2

)
 (t

3

)
 (t

4

)
 (t

5

)
 (t

2

)
 (t

3

)
 (t

4

)

Fig. 5. Fitness comparison between the S2F 2M and ESS for four experiments.

It is important to emphasize that for calibration and prediction purposes
these methods need one real fire line more than the classical prediction, so we
cannot provide suggestions at the first time t1, i.e., along the first step of these
methods it is only possible to apply the calibration stage whose result will be
used in t2. Thus, from t2 to tn, every step ti of the methods executes both CS

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 157 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

and FP, basing their FP in the Kign provided by the previous step ti−1 (see Fig.
2 and 3). This is the reason why the figure shows the results from t2 considered
in each experiment.

Another important point to highlight is to mention that the shown values
for ESS are the average of ten executions. In the case of S2F 2M , this is not
necessary because it gives a deterministic output.

5.3 Parallelism and Speedup

The results were obtained by executing both systems on a LINUX cluster (12
processors AMD64 2G RAM and Gigabit Ethernet 1000 Mbps) under an MPI
environment [13]. The performance gain has been analyzed using the measure
known as Speedup [12], which is defined as the ratio of the time taken to solve
a problem on a single processing element to the time required to solve the same
problem on a parallel computer with p identical processing elements.

The numbers of processors used were 1, 2, 4, 6, 8, 10 and 12 (although the
graph of speedup is usually designed with p equal to successive powers of 2).
Figure 6 shows the values obtained as an average of all experiments.

1

2

3

4

5

6

7

8

9

10

11

12

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

Processors

S
p

e
e

d
u

p

Linear

S2F2M

ESS

Fig. 6. Speedup for the methods.

The continuous line represents the linear case (or ideal Speedup). As we can
see, both methods have a speedup relatively good (S2F 2M a bit better than
ESS). For the purposes of a fair comparison, in both cases were performed the
same number of simulations. Thus, in addition to the graph, the execution times
are also similar (ESS takes on average 10% less execution time). However, in ac-
tual executions, ESS usually takes even less time because in principle, the number

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 158 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

of iterations depends on when it finds individuals who meet the expected fitness,
and this usually happens before in ESS that in S2F 2M (remember that S2F 2M
is deterministic and exhaustive method, while ESS is a not deterministic one).
For instance, for Experiment 4, ESS can take around 35 min to find individuals
with fitness equal to 0.85, or it can spend 140 min looking for individuals with
fitness equal to 0.95. In conclusion, there is a trade-off between time and quality,
and depends on the user to configure certain parameters to emphasize either the
time restriction or the expected quality.

6 Conclusions

In this work, a method is described, which represents a major enhancement com-
pared to previous methodologies. As we have seen, the techniques that combine
high performance computing with statistical methods have excellent ability to
solve or reduce the problem of uncertainty in input parameters. For this reason,
it is of great interest the ongoing research on this subject, so as to optimize and
evolve on the approaches and methods already developed to maximize the results
achieved. Then, from S2F 2M we have arrived at the concept of Evolutionary
Statistical System (ESS). To do this, we combined the power of the statisti-
cal calculation with capabilities provided by parallel evolutionary algorithms,
achieving results that actually improve the original methodology S2F 2M based
solely on statistical calculation and high performance computing. Both methods
have been described throughout the present work. They correspond to meth-
ods to reduce uncertainty in the input parameters, in this case applied to the
prediction of forest fires spread. Given the costs, risks and obvious difficulties
for design multiple fires in real plots to obtain reliable data for experimentation
and validation of the methods, the experiments were conducted on four real fires
considering different instants of time in each case. In addition to significantly
improve the accuracy of the prediction quality of the classical method, one of
the most important features of both methods is that they are general enough to
be used on different models (floods, avalanches, etc.). Thus, the combination of
evolutionary computation, parallelism and uncertainty reduction is a promising
option for tackling various Grand Challenge Problems, as in this case it is the
prediction of forest fire behaviour.

In this first approach of ESS, we decide apply parallelism only in the evalu-
ation of the individuals, with the goal of gradually increase the degree of paral-
lelism to compare the results offered by each alternative of PEAs. Further study
should focus on the analysis and tuning of the method to obtain the best possible
results and compare it with other methods.

References

1. Andrews, P.L., Bevins, C.D., Seli, R.C.: BehavePlus fire modeling system, version
2.0: User’s Guide. Gen. Tech. Rep. RMRS-GTR-106WWW. Ogden, UT: Dept. of
Agriculture, Forest Service, Rocky Mountain Research Station (2003) pp. 132

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 159 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

2. Ball, G.L., Guertin, D.P.: FIREMAP, in Nodvin, S. C. and Waldrop, T. A., Fire
and the Environment: Ecological and Cultural Perspectives: Proceedings of an In-
ternational Symposium. Knoxville, TN. USDA Forest Service, Southeastern Forest
Experiment Station, Asheville, NC. General Technical Report SE-69 (1991) 215–218

3. Bianchini, G., Caymes Scutari, P.: Uncertainty Reduction Method Based on Statis-
tics and Parallel Evolutionary Algorithms. Proceedings of High-Performance Com-
puting Symposium - 40 JAIIO (HPC 2011, ISSN: 1851-9326) (2011) 1–4

4. Bianchini, G., Denham, M., Cortés, A., Margalef, T., Luque, E. (2010): Wildland
Fire Growth Prediction Method Based on Multiple Overlapping Solution, Journal
of Computational Science, 1 Issue 4 (2010) 229–237

5. Bianchini, G., Cortés, A., Margalef, T., Luque, E.: Improved prediction methods for
Wildfires using High Performance Computing: A comparison. LNCS 3991, Part I
(2006) 539–546

6. Bianchini, G., Denham, M., Cortés, A., Margalef, T., Luque E.: Improving forest-
fire prediction by applying a statistical approach. Forest Ecology and Management.
(234, supplement 1) (2006) S210

7. Bevins, C. D.: FireLib User Manual & Technical Reference. (2004)
http://www.fire.org (Accessed on May 2012)

8. Bodrožić, L., Stipanicev, C., Šeric, M.: Forest fires spread modeling using cellular
automata approach. Modern trends in control. (eds V. Hladky, J. Paralic, J. Vašcak).
(2006) 23–33 (Košice, Slovakia: equilibria)

9. Finney M.A.: FARSITE: Fire Area Simulator-model development and evaluation.
Res. Pap. RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service,
Rocky Mountain Research Station. (1998) pp. 47

10. Fons W.: Analysis of fire spread in light forest fuels, J. Agric. Res. 72 (1946) 93–121
11. Goldberg, D.E.: Genetic and evolutionary algorithms. Come of age. Communica-

tions of the ACM, 37 (3) (1994) 113–119
12. Grama A., Gupta A., Karypis G., Kumar V.: Introduction to Parallel Computing.

Second Edition. Pearson (2003)
13. Gropp W., Lusk E., Skjellum A.: Using MPI - Portable Parallel Programming with

the Message-Passing Interface. Second edition. The MIT Press (1999)
14. Jorba, J., Margalef, T., Luque, E., Campos da Silva, J., Viegas, D.X.: Parallel

Approach to the Simulation of Forest Fire Propagation. Proc. 13 Inter. Symposium
“Informatik fur den Umweltshutz” der Gesellshaft Fur Informatik (GI) (1999) 68–81

15. Lopes, A.M.G., Cruz, M.G., Viegas, D.X.: FireStation - An integrated software
system for the numerical simulation of wind field and fire spread on complex topog-
raphy. Environmental Modelling & Software, 17 (3) (2002) 269–285

16. Mandel, J., Beezley, J.D., Kochanski, A.K.: Coupled atmosphere-wildland fire mod-
eling with WRF 3.3 and SFIRE 2011, Geoscientific Model Development (GMD) 4
(2011) 591–610

17. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming.
Addison-Wesley (2005)

18. Michalewics, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Third, Revised and Extended Edition. Springer (1999)

19. Montgomery, D.C., Runger G.C.: Probabilidad y Estad́ıstica aplicada a la Inge-
nieŕıa. Limusa Wiley (2002)

20. Nelson, K.M.: Applications of evolutionary algorithms in mechanical engineering.
(1997) http://digitool.fcla.edu/dtl publish/34/12514.html (Accessed on May 2012)

21. Rothermel, R. C.: A mathematical model for predicting fire spread in wildland
fuels, Res. Pap. INT-115, US Dept. of Agric., Forest Service, Intermountain Forest
and Range Experiment Station. (Ogden, UT.) (1972)

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 160 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

22. Rothermel, R. C.: How to predict the spread and intensity of forest fire and range
fires. Gen. Tech. Rep. INT-143, US Dept. of Agric., Forest Service, Intermountain
Forest and Range Experiment Station. (Ogden, UT.) (1983)

23. Viegas, D.X. (Coordinator) et al., Project Spread - Forest Fire Spread Prevention
and Mitigation (2004) http://www.algosystems.gr/spread/ (Accessed on May 2012)

HPCLatAm 2012, pp. 149-161 (full paper)
ISSN 2422-5207

Session: Applications
E. Mocskos & S. Nesmachnow (Eds.)

July 25 - August 3, 2012
Buenos Aires, Argentina

Page 161 Latin American Symposium on High Perfomance Computing - HPCLatAm 2012

