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Abstract. This paper discusses how to decrease and stabilize network
latency in a Beowulf system. Having low latency is particularly important
to reduce execution time of High Performance Computing applications.
Optimization opportunities are identified and analyzed over the differ-
ent system components that are integrated in compute nodes, including
device drivers, operating system services and kernel parameters.

This work contributes with a systematic approach to optimize communi-
cation latency, provided with a detailed checklist and procedure. Perfor-
mance impacts are shown through the figures of benchmarks and mpi-
BLAST as a real-world application. We found that after several straight-
forward optimizations on default configuration Gigabit Ethernet latency
was reduced from about 50 µs of communication latency. Using different
techniques, it is possible to get as low as nearly 20 µs.

1 Introduction

1.1 Beowulf Clusters

Instead of purchasing an expensive and high-end symmetric multiprocessing
(SMP) system, most scientists today choose to interconnect multiple regular-
size commodity systems as a means to scale computing performance and gain
the ability to resolve bigger problems without requiring heavy investments [1]
[2] [3].

The key driving factor is cost, hence out-of-the-box hardware components are
used together with open source software to build those systems. In the specific
case of academia, open source software provides the possibility to make soft-
ware stack modifications, therefore enabling innovation and broadening their
adoption.

Clusters are nearly ubiquitous at the Top500 ranking listing most powerful
computer systems worldwide, clustered systems represent more than 80% of the
list (Figure 1).



Fig. 1. Top500 List by Architecture (as of November 2011)

As the cheapest network fabrics are the ones being distributed on-board
by system manufacturers, Ethernet is the preferred communication network in
Beowulf clusters. At the moment Gigabit Ethernet is included integrated on
most hardware.

1.2 Latency

Latency itself can be measured at different levels, in particular communication
latency is a performance metric representing the time it takes for information to
flow from one compute node into another. It then becomes not only important
to understand how to measure the latency of the cluster but also to understand
how this latency affects the performance of High Performance applications [4].

In the case of latency-sensitive applications, messaging needs to be highly
optimized and even be executed over special-purpose hardware. For instance la-
tency directly affects the synchronization speed of concurrent jobs in distributed
applications, impacting their total execution time.

1.3 Related Work

There are extensive work on how to reduce communication latency [5] [6]. How-
ever, this work contributes not with a single component but with a system wide
point of view.

The top supercomputers in the world report latencies that commodity sys-
tems cannot achieve (Figure 2). They utilize specially built network hardware,
where the cost factor is increased to get lower latency.

System Latency Description

HP BL280cG65 0.49 µsec Best Latency

Fujitsu K Computer 6.69 µsec Top system

Fig. 2. Latency at the HPCC ranking

High performance network technology (like InfiniBand [7]) is used in cases
were Ethernet cannot meet the required latency (see reference values in Figure



3). Some proprietary network fabrics are built together with supercomputers
when they are designed from scratch.

Latency Technology

30-125 µsec 1Gb Ethernet

5-30 µsec 10Gb Ethernet

Fig. 3. System Level Ethernet Latency

1.4 Problem Statement

The time it takes to transmit on a network can be calculated as the required
time a message information is assembled and dissembled plus the time needed to
transmit message payload. Equation 1 shows the relation between these startup
plus throughput components for the transmission of n bytes.

t(n) = α+ β × n (1)

In the hypothetical case where zero bytes are transmitted, we can get the
minimum possible latency on the system (Equation 2). The value of α is also
known as the theoretical or zero-bytes latency.

t(0) = α (2)

It is worth noticing that α is not the only player in the equation, 1/β is called
network bandwidth, the maximum transfer rate that can be achieved. β is the
component that affects the overall time as a function of the package size.

2 Benchmarking Latency

There are different benchmarks used to measure communication latency.

2.1 Intel MPI Benchmarks

The Intel MPI Benchmarks (IMB) are a set of timing utilities targeting most
important Message Passing Interface (MPI) [8] functions. The suite covers the
different versions of the MPI standard, and the most used utility is Ping Pong.

IMB Ping Pong performs a single message transfer exercise between two
active MPI processes (Figure 4). The action can be run multiple times using
varying message lengths, timings are averaged to avoid measurement errors.



Fig. 4. IMB Ping Pong Communication

Using only MPI basic routines, a package is sent (MPI SEND) from a host
system and received (MPI RECV) on a remote one (Figure 5) and the time is
reported as half the time in µs for an X long bytes (MPI BYTE) package to
complete a round trip.

Fig. 5. IMB Ping Pong Benchmark

As described by the time formula at Equation 1, different measures of trans-
mission time are obtained depending on the package size. To get the minimum
latency an empty package is used.

2.2 Other Benchmarks

There are other relevant HPC benchmarks that are usually used to exercise
clusters: HPL and HPCC. These exercise the system from an application level,
integrating all components performance for a common goal.

It is worth mentioning that there are other methods that work at a lower
level of abstraction, for instance using Netperf [11] or by following RFC 2544
[12] techniques. However these last two measure latency at network protocol and
device level respectively.

High Performance Linpack High Performance Linpack is a portable bench-
mark for distributed-memory systems doing pure matrix multiplication [9]. It



provides a testing and timing tool to quantify cluster performance. It requires
MPI and BLAS supporting libraries.

High Performance Computing Challenge Benchmarks The HPC Chal-
lenge benchmark suite [10] packages 7 benchmarks:

HPL: measures floating point by computing a system of linear equations.

DGEMM: measures the floating point rate of execution of double precision real
matrix-matrix multiplication.

STREAM: measures sustainable memory bandwidth.

PTRANS: computes a distributed parallel matrix transpose

RandomAccess: measures random updates of shared distributed memory

FFT: double precision complex one-dimensional discrete Fourier transform.

b eff: measures both communication latency and bandwidth

HPL, DGEMM, STREAM, FFT run in parallel in all nodes, so they can
be used to check if cluster nodes are performing similarly. PTRANS, Rando-
mAccess and b eff exercise the system cluster wide. It is expected that latency
optimizations impact their results differently.

3 Methods

Given a simplified system view of a cluster, there are multiple compute nodes
that together run the application. An application uses software such as libraries
that interface with the operating system to reach hardware resources through
device drivers. This work analyzes the following components:

Ethernet Drivers: interrupt moderation capabilities

System Services: interrupt balancing and packet-based firewall

Kernel Settings: low latency extensions on network protocols

Further work to optimize performance is always possible; only the most rele-
vant optimizations were considered according to gathered experience over more
than 5 years on the engineering of volume HPC solutions.

3.1 Drivers

As any other piece of software, device drivers implement algorithms which, de-
pending on different factors, may introduce latency. Drivers may even expose
hardware functionalities or configurations that could change the device latency
to better support the Beowulf usage scenario.



Interrupt Moderation Interrupt moderation is a technique to reduce CPU
interrupts by caching them and servicing multiple ones at once [13]. Although it
make sense for general purpose systems, this introduces extra latency, so Ether-
net drivers should not moderate interruptions when running in HPC clusters.

To turn off Interrupt Moderation on Intel network drivers add the following
line on each node of the cluster and reload the network driver kernel module.
Refer to documentation [15] for more details.

# echo "options e1000e InterruptThrottleRate=0" > /etc/modprobe.conf

# modprobe -r e1000e && modprobe e1000e

For maintenance reasons some Linux distributions do not include the config-
uration capability detailed above. In those cases, the following command can be
used to get the same results.

# ethtool eth0 rx-usecs

There is no portable approach to query kernel modules configurations in all
Linux kernel versions, so configuration files should be used as a reference.

3.2 Services

Interrupt Balancing Some system services may directly affect network la-
tency. For instance irqbalance job is to distribute interrupt requests (IRQs)
among processors (and even between each processor cores) on a Symmetric
Multi-Processing (SMP) system. Migrating IRQs to be served from one CPU
to another is a time consuming task that although balance the load it may affect
overall latency.

The main objective of having such a service is to balance between power-
savings and optimal performance. The task it performs is to dynamically dis-
tribute workload evenly across CPUs and their computing cores. The job is done
by properly configuring the IO-ACPI chipset that maps interruptions to cores.

An ideal setup will assign all interrupts to the cores of a same CPU, also
assigning storage and network interrupts to cores near the same cache domain.
However this implies processing and routing the interrupts before running them,
which has the consequence of adding a short delay on their processing.

Turning off the irqbalance service will help then to decrease network latency.
In a Red Hat compatible system this can be done as follows:

# service irqbalance stop

# chkconfig irqbalance off

$ service irqbalance status



Firewall As compute nodes are generally isolated on a private network reach-
able only through the head node, the firewall may not even be required. The
system firewall needs to review each package received before continuing with the
execution. This overhead increases the latency as incoming and outgoing packet
fields are inspected during communication.

Linux-based systems have a firewall in its kernel that can be controlled
throughout a user-space application called iptables. This application runs in the
system as a service, therefore the system’s service mechanisms has to be used to
stop it.

# service iptables stop

# chkconfig iptables stop

$ lsmod | grep iptables

3.3 Kernel Parameters

The Linux Transport Control Protocol (TCP) stack makes decisions by default
that favors higher throughput as opposed to low latency. The Linux TCP stack
implementation has different packet lists to handle incoming data, the PreQueue
can be disabled so network packets will go directly into the Receive queue. In
Red Hat compatible systems this can be done with the command:

# echo 1 > /proc/sys/net/ipv4/tcp_low_latency

$ sysctl -a | grep tcp_low_latency

There are others parameters that can be analyzed [14], but the impact they
cause are too application specific to be included on a general optimization study.

4 Optimization Impact

4.1 IMB Ping Pong

Using IMB Ping Pong as workload, the following results (Figure 6) reflect how
the different optimizations impact communication latency. The actual figures on
average and deviation are shown below at Figure 7.



Fig. 6. Comparison of Optimizations

Optimization x̃ (σ2) Impact

Default 50.03 (4.31) N/A

IRQ Moderation 31.63 (0.83) 36.79%

Firewall 41.62 (8.90) 16.82 %

TCP LL 51.59 (8.22) -3.11%

IRQ Balance 49.72 (9.68) 0.62 %

Combined 21.31 (2.09) 57.40 %

Fig. 7. IMB Ping Pong Optimization Results

The principal cause of overhead in communication latency is then IRQ mod-
eration. Another important contributor is the packet firewall service. We found
that the low latency extension for TCP was actually slightly increasing the IMB
Ping Pong reported latency. In the case of the IRQ balance service, the impact
is only minimal.

Optimizations impact vary, and not surprisingly they are not accumulative
when combining them all. At a glance, it is possible to optimize the average
latency in nearly 54%, nearly halving result deviations.

4.2 High Performance Linpack

A cluster-wide HPL running over MPI reported results as shown in Figure 8. The
problem size was customized to Ns:37326 NBs:168 Ps:15 Qs:16 for a quick but
still representative execution with a controlled deviation.



Optimization Wall-time Gflops

Default 00:20:46 0.02921

Optimized 00:09:03 0.07216

Fig. 8. HPL Results

As we can see on the results, the actual synchronization cycle done by the
algorithm heavily relies on having low latency. The linear system is partitioned
in smaller problem blocks which are distributed over a grid of processes which
may be on different compute nodes. The distribution of matrix pieces is done
using a binary tree among compute nodes with several rolling phases between
them. The required time was then reduced 56%, and the gathered performance
was increased almost 2.5 times.

4.3 HPCC

Figures 9 and 10 show HPCC results obtained with a default and optimized
Beowulf cluster. As we can see on the results, the overall execution time is
directly affected with a 29% reduction. The performance figures differ across
packaged benchmarks as they measure system characteristics that are affected
by latency in diverse ways.

Fig. 9. HPCC Performance Results (higher is better)

Optimization Wall-time

Default 00:10:32

Optimized 00:07:27

Fig. 10. HPCC Timing Results



Local benchmarks like STREAM, DGEMM and HPL are not greatly af-
fected, as they obviously do not need communication between compute nodes.
However, the actual latency, bandwidth and PTRANS benchmark are impacted
as expected due they communication dependency.

4.4 mpiBLAST

In order to double check if any of the optimization have hidden side effects and
the real impact on the execution of a full-fledge HPC application, a real-world
code was exercised. mpiBLAST [16] is an open source tool that implements DNA-
related algorithms to find regions of similarity between biological sequences.

Figure 11 shows the actual averaged figures after multiple runs. Results got
with a default and optimized system on a fixed workload for mpiBLAST. The
required time to process the problem was reduced by 11% with the previous 42%
improvement as measured by IMB Ping Pong.

Optimization Wall-time

Default 534.33 seconds

Optimized 475.00 seconds

Fig. 11. mpiBLAST Results

This shows that the results of a synthetic benchmark like IMB Ping Pong
can not be used directly to extrapolate figures, they are virtually the limit to
what can be achieved by an actual application.

4.5 Testbed

The experiments done as part of this work were done over 32 nodes with the
following bill of materials (Figure 12).

Component Description

Server Board Intel(R) S5000PAL

CPU Intel(R) Xeon(R) X5355 @ 2.66GHz

Ethernet controller Intel(R) 80003ES2LAN (Copper) (rev 01)

RAM Memory 4 GB DDR2 FB 667 MHz

Operating System Red Hat Enterprise 5.5 (Tikanga)

Network Driver Intel(R) PRO/1000 1.2.20-NAPI

Ethernet Switch Hewlett Packard HPJ4904A

Fig. 12. Compute Node Hardware and Software



5 Optimization Procedure

Figure 13 summarizes the complete optimization procedure. It is basically a se-
quence of steps involving checking and reconfiguring Ethernet drivers and system
services if required. Enabling TCP extensions for low latency is not included due
their negative consequences.

Fig. 13. Latency Optimization Procedure

5.1 Detailed Steps

The steps below include the purpose and an example of the actual command to
execute as required on Red Hat compatible systems. The pdsh3 parallel shell is
used to reach compute nodes at once.

Questions (1) helps to dimension the required work to optimize driver config-
uration to properly support network devices. Questions (2) helps to understand
what’s needed to properly configure system services.

1. Interrupt Moderation on Ethernet Driver

(a) Is the installed driver version the latest and greatest?

$ /sbin/modinfo -F version e1000e

1.2.20-NAPI

3 http://sourceforge.net/projects/pdsh



(b) Is the same version installed across all compute nodes?

$ pdsh -N -a ’/sbin/modinfo -F version e1000e’ | uniq

1.2.20-NAPI

(c) Are interrupt moderation settings in HPC mode?

# pdsh -N -a ’grep "e1000e" /etc/modprobe.conf’ | uniq

options e1000e InterruptThrottleRate=0

2. System Services

(a) Is the firewall disabled?

# pdsh -N -a ’service iptables status’ | uniq

Firewall is stopped.

(b) Is the firewall disabled at startup?

# pdsh -N -a ’chkconfig iptables --list’

irqbalance 0:off 1:off 2:off 3:off 4:off 5:off 6:off

(c) Was the system rebooted after stopping firewall services?

$ uptime

15:42:29 up 18:49, 4 users, load average: 0.09, 0.08, 0.09

(d) Is the IRQ balancing service disabled?

# pdsh -N -a ’service irqbalance status’ | uniq

irqbalance is stopped

(e) Is IRQ balancing daemon disabled at startup?

# pdsh -N -a ’chkconfig irqbalance --list’ | uniq

irqbalance 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Once gathered all the information required to known if optimizations can be
applied, the following list can be used to apply configuration changes. Between
each change a complete cycle of measurement should be done. This include
contrasting old and new latency average plus their deviation using at least IMB
Ping Pong.

Disable IRQ Moderation

# pdsh -a ’echo "options e1000e InterruptThrottleRate=0" >> \

/etc/modprobe.conf’

# modprobe -r e1000e; modprobe e1000e

Disable IRQ Balancer

# pdsh -a ’service irqbalance stop’

# pdsh -a ’chkconfig irqbalance off’

Disable Firewall

# pdsh -a ’service iptables stop’

# pdsh -a ’chkconfig iptables off’



6 Conclusion

This work shows that by only changing default configurations the latency of a
Beowulf system can be easily optimized, directly affecting the execution time of
High Performance Computing applications. As a quick reference, an out-of-the-
box system using Gigabit Ethernet has around 50 µs of communication latency.
Using different techniques, it is possible to get as low as nearly 20 µs.

After introducing some background theory and supporting tools, this work
analyzed and exercised different methods to measure latency (IMB, HPL and
HPCC benchmarks). This work also contrasted those methods and provided
insights on how they should be executed and their results analyzed.

We identified which specific items have higher impact over latency metrics
(interrupt moderation and system services), using de-facto benchmarks and a
real-world application such as mpiBLAST.

6.1 Future Work

Running a wider range of real-world computational problems will help to un-
derstand the impact in different workloads. A characterization of the impact ac-
cording to the application domain, profiling information or computational kernel
might be useful to offer as a reference.

There are virtually endless opportunities to continue with the research on la-
tency optimization opportunities; among them components like BIOS, firmware,
networking switches and routers. An interesting opportunity are the RX/TX
parameters of Ethernet drivers that control the quantity of packet descriptors
used during communication.

Another option is to implement an MPI trace analysis tool to estimate the
impact of having an optimized low latency environment. At the moment there
are several tools to depict communication traces (Jumpshot4, Intel’s ITAC5),
but they do not provide a simulation of what would happen while running over
a different network environment. Having this approximation can be useful to
decide if it is worth to purchase specialized hardware or not.
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