
Parallel Adaptive Simulation of Coupled
Incompressible Viscous Flow and

Advective-Diffusive Transport Using Stabilized
FEM Formulation

Andre Rossa1 and Alvaro Coutinho2

1 Engineering Simulation and Scientific Software,
Avenida Presidente Vargas, 3131, 20210-031,

Rio de Janeiro, Brazil
andre.rossa@esss.com.br

http://www.esss.com.br
2 High-Performance Computing Center, Department of Civil Engineering,

Federal University of Rio de Janeiro,
Cidade Universitária, Centro de Tecnologia, Bloco I, Sala I-248, 21941-972

Rio de Janeiro, Brazil
alvaro@nacad.ufrj.br

http://www.nacad.ufrj.br

Abstract. In this work we study coupled incompressible viscous flow
and advective-diffusive transport of a scalar. Both the Navier-Stokes
and transport equations are solved using an Eulerian approach. The
SUPG/PSPG stabilized finite element formulation is applied for the 8-
node isoparametric hexahedron. The implementation is held using the
libMEsh finite element library which provides the support for adaptive
mesh refinement and coarsening and parallel computation. The Rayleigh-
Bénard natural convection and the planar lock-exchange density current
problems are solved to assess the adaptive parallel performance of the
numerical solution.

Keywords: Stabilized FEM formulation, incompressible flows, adaptive
meshes, parallel computing.

1 Introduction

The numerical simulation of current engineering problems would not be feasible
without the advent of parallel computing. Even with the development of tech-
niques for mesh adaptation, the fastest available processors are not able to solve,
within a practical period of time, problems that have large amounts of degrees
of freedom. High-performance computing (HPC) have enabled the solution of
problems with a large number of unknowns and high complexity (often involv-
ing multiple scales and multiple physics) by clusters of computers installed in
universities as well in industry research centers.

2 Andre Rossa and Alvaro Coutinho

To make HPC be efficiently used, a set of algorithms and computational
methods have been developed over the last decade that made possible high fi-
delity solution of complex problems. Processors with multiple cores with shared
memory, clusters of personal computers in which each processor has its own
memory (distributed memory) and more recently, the hybrid memory architec-
tures are present on the daily work of engineers and researchers.

Although improving the processing capacity parallel computation have added
complexity to the computer codes programing. According to [1] scaling perfor-
mance is particularly problematic because the vision of seamless scalability can-
not be achieved without having the applications scale automatically as the num-
ber of processors increases. However, for this to happen, the applications have to
be programmed to exploit parallelism efficiently. Therefore, parallel computing
resources should be used rationally in order to obtain compatible performances.

Good simulation practice suggests that the applications and algorithms em-
ployed in HPC should be optimized for this purpose. Currently there are available
(mostly freely distributed) several programs to perform different tasks inherent
to parallel computing. The domain partitioning and load balancing, information
exchange between processors, algebraic operations and linear preconditioned sys-
tems solving are some of the necessary operations and have specific computa-
tional libraries that can be incorporated into the implementation of a numerical
simulator.

In order to keep the focus on the issues related to the numerical problem,
we use the libMesh framework, which is a C++ library for parallel adaptive
mesh refinement/coarsening numerical multiphysics simulations based on the fi-
nite element method [2]. The library has been developed since 2002 by a group
of researchers from CFDLab, Department of Aerospace Engineering and Engi-
neering Mechanics, University of Texas at Austin, and is available as open source
software (http://libmesh.sourceforge.net/).

In this work we implement stabilized finite element formulations for the
Navier-Stokes and advective-diffusive transport in libMesh. Parallel adaptive
simulations of coupled problems confirm the mesh size reduction potential and
the ability to capture the solution lower scales as well the development of the
interface between the fluids in evolution problems.

The remaining of this work is organized as follows. In the next section the
dimensionless governing equations for the coupled viscous flow and transport
is presented together with correspondent stabilized SUPG/PSPG finite element
method (FEM) formulation. Details of the adaptive mesh refinement/coarsening
(AMR/C) in the context of the libMesh library as well some aspects of the paral-
lel solution of precondiotioned linear systems are presented in Section 3. Section
4 presents the results of the parallel adaptive simulation of the Rayleigh-Bnard
natural convection and a density current in a planar lock-exchange configuration.
The paper ends with the main conclusions.

Parallel Adaptive Simulation of Incompressible Viscous Flow 3

2 Mathematical Formulation

2.1 Governing Equations

Assuming an unsteady incompressible viscous flow and the Bousinessq approxi-
mation, the dimensionless Navier-Stokes, continuity and scalar transport equa-
tions3 can be written in a non-conservative way following a Eulerian description
as

∂u

∂t
+ u∇u− 1

Re
∇2u +∇p =

Gr

Re2
φe in Ω × [0, t] , (1)

∇ · u = 0 in Ω × [0, t] , (2)

∂φ

∂t
+ u · ∇φ− 1

D
∇2φ = 0 in Ω × [0, t] . (3)

defined in the simulation domain Ω which is surrounded by the smooth boundary
Γ . The time is t, u = (u, v, w)

T
is the velocity field, p is the pressure and φ the

scalar being transported and

e =
g

‖g‖
(4)

is an unit vector aligned with the gravity g.
In (1) Re and Gr are the Reynolds and Grashof numbers. The parameter D

in equation (3) represents a dimensionless diffusive constant depending on the
nature of the scalar being transported (e.g., the Peclet number for the temper-
ature transport).

The essential and natural boundaries conditions are:

u = g on Γg ,

n ·
[

1

Re

(
∇u + (∇u)

T
)
− pI

]
= h on Γσ ,

φ = φ on Γφ,

−n · ∇φ = q on Γq

(5)

where n is the unit outward normal vector on the boundary and I is the 3 × 3
identity matrix.

The initial conditions are:

u (x, 0) = u0 ,

φ (x, 0) = φ0
(6)

where the initial velocity field u0 is divergent free.

3 Details on how the physical quantities may be normalized in order to arrive at
dimensionless equations can be found at [3].

4 Andre Rossa and Alvaro Coutinho

In gravity current problems, the concept of buoyancy velocity ub is largely
used (see [5]). It may be defined as

ub :=
√
g′hv (7)

where hv is a scale length related to the vertical dimension of the simulation
domain (usually taken as the domain height) and g

′
is called the reduced gravity

given by

g
′

:= g
ρ1 − ρ2
ρ∞

(8)

where g is the absolute value of the gravitational acceleration, ρ∞ is the reference
density, ρ1 is the density of the “heavy” fluid and ρ2 is the density of the “light”
fluid.

When one uses the buoyancy velocity as a reference velocity and hv as the
scale length, the Reynolds number may be computed directly from the Grashof
as follow

Re =
√
Gr . (9)

For particle-driven problems (a class of gravity current phenomenon), where
the transported scalar is the density ρ, the diffusivity constant is given by the
product of the Schmidt Sc and Grashof numbers. Taking it into account, the
Navier-Stokes and advective-diffusive equations may be rewritten as

∂u

∂t
+ u∇u− 1√

Gr
∇2u +∇p = ρe , (10)

∂ρ

∂t
+ u · ∇ρ− 1

ScGr
∇2ρ = 0 . (11)

2.2 Stabilized Finite Element Formulation

Given a suitably defined finite-dimensional trial solution and weight functions
spaces for velocity and pressure

Shu =
{

uh | uh ∈
[
H1h (Ω)

]3
, uh

.
= gh em Γg

}
,

V hw =
{

wh | wh ∈
[
H1h (Ω)

]3
, wh .

= 0 em Γg

}
,

Shp = V hp =
{
qh | qh ∈ H1h (Ω)

} (12)

where H1h (Ω) is the finite-dimensional space function square integrable into
the element domain, the stabilized SUPG/PSPG FEM formulation for the non-
dimensional Navier-Stokes and continuity equations (1) and (2) can be written

Parallel Adaptive Simulation of Incompressible Viscous Flow 5

as: Find uh ∈ Shu and ph ∈ Shp such as, ∀wh ∈ V hw and ∀qh ∈ V hp ,∫
Ω

wh ·
[(

∂uh

∂t
+ uh∇uh

)
− lh

]
dΩ +

1

Re

∫
Ω

(
∇wh

)T · ∇uhIdΩ−∫
Ω

∇whphIdΩ −
∫
Γ

wh · hhdΓ +

∫
Ω

qh∇ · uhdΩ+

nel∑
e=1

∫
Ωe

(
τSUPGuh∇wh

)
·
[(

∂uh

∂t
+ uh∇uh

)
+∇ph − lh

]
dΩe+

nel∑
e=1

∫
Ωe

(
τPSPG∇qh

)
·
[(

∂uh

∂t
+ uh∇uh

)
+∇ph − lh

]
dΩe = 0 .

(13)

The first four integrals in (13) arise from the classical Galerkin weak formu-
lation for the Navier-Stokes equations. The fifth integral represents the classical
Galerkin formulation for the continuity equation. The summations over the ele-
ments are the SUPG and the PSPG stabilizations for the Navier-Stokes equation.
The parameters adopted for both stabilizations were obtained from [4] and are
defined as follows

τSUPG = τPSPG =

(2

∥∥uh∥∥
h

)2

+ 9

(
4

Reh2

)2
− 1

2

. (14)

The dimensionless stabilizations parameters are local (element level) so, the
velocity modulus

∥∥uh∥∥ is calculated for each element e and h is an element length
measure based in its volume V as shown bellow

h =
3

√
6V

π
. (15)

The discretized dimensionless body force are represented by lh.
For the dimensionless advective-diffusive transport we adopt the same as-

sumptions, so given the following finite-dimensional trial solution and weight
functions spaces for the scalar

Shφ =
{
φh | φh ∈ H1h (Ω) , φh

.
= φ

h
in Γφ

}
,

V hw =
{
wh | wh ∈ H1h (Ω) , wh

.
= 0 em Γφ

} (16)

the stabilized FEM formulation can be written as: Find φh ∈ Shφ such as, ∀wh ∈
V hw ,∫

Ω

wh ·
(
∂φh

∂t
+ uh · ∇φh

)
dΩ +

1

D

∫
Ω

(
∇wh

)T · ∇φhdΩ − ∫
Γ

whqdΓ+

nel∑
e=1

∫
Ωe

(
τSUPGuh · ∇wh

)
·
[(

∂φh

∂t
+ uh · ∇φh

)]
dΩe = 0 .

(17)

6 Andre Rossa and Alvaro Coutinho

The three first integrals in (17) come from the Galerkin weak formulation.
The integral into the summation over the elements is the SUPG stabilization.
The non-dimensional stabilization parameter is computed similarly to (14), that
is:

τSUPG =

(2

∥∥uh∥∥
h

)2

+ 9

(
4

Dh2

)2
− 1

2

. (18)

In the stabilized formulations (17), an additional stabilization is added to
handle instabilities in the numerical solution of flows with presence of strong
gradients of the scalar being transported. [6] present a discontinuity capturing
term which is calculated as follows:

nel∑
e=1

∫
Ωe

δ
(
φh
)
∇wh · ∇φhdΩe . (19)

Because the δ parameter is a function of the scalar, (17) can be understood
as a nonlinear diffusion operator. In this work, the δ parameter was adapted
from [6] as follows in dimensionless form

δ
(
φh
)

=

∣∣∣∣ 1

φ∗
R
(
φh
)∣∣∣∣
(

3∑
i=1

∣∣∣∣ 1

φ∗
∂φh

∂xi

∣∣∣∣2
)β/2−1

h

2

β

(20)

where φ∗ is a dimensionless value of the scalar (usually taken as 1) and R
(
φh
)

is an approximation for the actual residual defined as:

R
(
φh
)

=
∂φh

∂t
+ uh · ∇φh . (21)

The β parameter can be set as 1 or 2.

2.3 Discretized Systems

Adopting the implicit backward Euler scheme for the time discretization together
with a fixed point linearization, the final discrete system of (13) and (17) results
in

(M + Mτ) un+1,k+1 +∆t
(
N
(
un+1,k

)
+ Nτ

(
un+1,k

)
+ K

)
un+1,k+1−

∆t (G−Gτ) pn+1,k+1 = ∆t (f (φn) + fτ (φn)) + (M + Mτ) un ,
(22)

∆tGTun+1,k+1 + Mξu
n+1,k+1 +∆t

(
Nξ

(
un+1,k

)
un+1,k+1 + Gξp

n+1,k+1
)

=

∆tfξ (φn) + Mξu
n ,

(23)

Parallel Adaptive Simulation of Incompressible Viscous Flow 7

(M + Mτ)φn+1,k+1+

∆t
(
N
(
un+1

)
+ Nτ

(
un+1

)
+ K + Kδ

(
φn+1,k

))
φn+1,k+1 =

(M + Mτ)φn .

(24)

In the matrix systems (22), (23) and (24) u, p and φ are the nodal vectors
of the correspondent unknowns uh, ph and φh, and ∆t stands for the time-step
size. The super indexes n + 1 and n mean the current and previous time-steps
while k + 1 and k are respectively the current and previous nonlinear iterations
counter.

For the matrices where the advective operator appears, i.e., Galerkin advec-
tion, SUPG mass and advection, and PSPG advection, the velocity components
are evaluated at each integration point. M is the mass matrix, K is the vis-
cous/diffusive matrix, N (u) is the nonlinear advection matrix, G and GT are
the gradient and its transpose (divergent) matrices. f is the body force vector.
Kδ (φ) is the nonlinear discontinuity capturing matrix. The matrices and vectors
with the subscripts τ and ξ mean the SUPG and PSPG terms.

3 Computational Aspects

3.1 Mesh Adaptivity

The mesh adaptivity together with high-performance computing (parallel pro-
cessing) play a key role to enable numerical simulations of actual engineer-
ing/industrial problems within an acceptable time without exhausting the pro-
cessing capacity of current computers.

Particularly for the density current problem, AMR/C is a important tool to
capture and track the flow structure at the front, where the Kelvin-Helmholtz
billows occur. From an initial coarse mesh, the adaptivity refinement process
begins near the interface between the two fluids and it follows its development.

In libMesh the mesh refinement can be accomplished by element subdivision
(h-refinement), increasing the local polynomial degree (p-refinement) as well a
combination of both methods (hp-refinement). Although there is an extensive
literature devoted to obtaining reliable a posteriori estimators that are more
closely linked to the operators and governing equations [7, 8], in libMesh the
error indicator is focused on local indicators that are essentially independent of
the physics [2].

libMesh uses a statistical refinement/coarsening scheme based on the ideas
presented in [9] where the mean µ and the standard deviation σ of the error
indicator “population” are computed. Using refinement and coarsening fractions
(rf and rc), the elements are flagged for refinement and coarsening as showed in
Fig. (1).

This scheme is suitable for evolution problems where, in the beginning, a
small error is evenly distributed. Throughout the simulation the error distribu-
tion spreads and the AMR/C process starts. Whether the solution approaches

8 Andre Rossa and Alvaro Coutinho

e

P(e)

Elements selected

for refinement

Elements selected

for coarsening

rf

rcm-s

m+s

m+sm-s m

Fig. 1. Statistical refinement: elements in hatched areas are flagged to AMR/C process.

its steady-state, the distribution of error also reaches the steady-state, stopping
the AMR/C process.

The elements are refined through a “natural refinement” scheme: elements of
dimension d, with the exception of the pyramids, produce 2d elements of the same
type after refinement. The degrees of freedom are constrained at the hanging
nodes on element interfaces. This approach yields a tree data structure formed
by the “parents” and their “children” elements. The elements present in the
initial mesh (level-0 elements) have no parents as well the active elements (those
that are part of the current simulation mesh) have no children, so the latter are
the current high-level elements. The element level is determined recursively from
its parents and the user should determine the maximum refinement level.

The frequency of refinement/coarsening is an user’s responsibility. When the
mesh adapts it is optimized for the state at the current time [10]. One should find
a frequency of adaptivity which will balance the computational effort and quality
of results as there is a computational cost associated with the adaptivity process.
When the mesh is adapted, the field solution should be projected (interpolated)
and a simulation should be performed on the new mesh.

In this work we use a class of errors estimators based on derivative jump (or
flux jump) of the transported scalar calculated at the elements interface called
Kelly’s Error Estimator [11] to perform the h-refinement. The refinement and
coarsening fractions for the statistical strategy as well the adaptivity frequency
are set independently for each simulation problem.

3.2 Domain Decomposition

In this paper, we consider the standard partitioning domain without overlap, as
shown in Fig. (2), where the elements related to each of the sub-domains are
assigned to different processors. That is, the simulation domain Ωh is divided
into a discrete set of sub-domains Ωhp such as

⋃
Ωhp = Ωh and

⋂
Ωhp = ∅.

Parallel Adaptive Simulation of Incompressible Viscous Flow 9

Fig. 2. Simulation domain decomposition in 8 sub-domains.

In AMR/C computations at new stage adaptation, regions of the domain will
have an increase in mesh element density while in others, the number of elements
will decrease. These dynamic mesh adjustments result for some processors in
significant increasing (or decreasing) work therefore causing unbalanced load
[1].

Libraries such as METIS and ParMETIS were developed aiming implement-
ing efficient partitioning mesh schemes. The first is a serial library partition-
ing, while the second is based on parallel MPI. Both can also reorder the un-
knowns in unstructured grids to minimize the fill-in during LU factorization.
The ParMETIS extends the functionality provided by METIS and includes rou-
tines for parallel computations with adaptive meshes refinement and large-scale
numerical simulations.

3.3 Parallel Solution of Preconditioned Linear Systems

The support for the numerical solution of the differential equations in the par-
allel architecture environment is provided by PETSc. It provides structures for
efficient storage (vectors, arrays, for example), as well ways to handle it. The
libMesh uses compressed sparse row (CSR) structure. The PETSc has a num-
ber of methods for solving linear sparse system as GMRES and BiConjugate
Gradient method (BiCG) and several types of preconditioners as ILU(k) and
Block-Jacobi. Options for reordering the linear system as the Reverse Cuthill-
McKee method (RCM, [12]) are also available.

In this work we use Block-Jacobi sub-domain preconditioning. It is one of
the most widely used schemes due to its easiness of implementation. There are

10 Andre Rossa and Alvaro Coutinho

no overlap between the blocks. The incomplete factorization may be applied
to each of them without extra cost in communication. However, in adaptive
simulations, the new local factorization should be performed every time the
mesh is modified since the adaptivity changes the group of elements residing in
each sub-domain [13]. It is usual to refer to the Block-Jabobi preconditioning
strategy in conjunction with the ILU factorization with a certain level k of fill-in
by BILU(k) [14].

The communication between the processors, such as required for the algebraic
operations or during assembly of arrays of elements are supported by a set of
PETSc library routines which is designed for parallel computing using the MPI
API.

4 Numerical Results

The simulations were performed in a SGI Altix ICE 8400 cluster with 640 cores
(Intel Nehalem). This machine has 1.28 TB of distributed memory. The pro-
cessing nodes are connected by InfiniBand. The cluster is located at the High-
Performance Computing Center (NACAD) of the Federal University of Rio de
Janeiro, Brazil.

4.1 Parallel Adaptive Simulation of the Rayleigh-Bénard Problem

In this example we consider the Rayleigh-Bénard natural convection in a con-
tainer with geometric domain Ω = [0, 4]× [0, 1]× [0, 1]. This problem consists to
solve a natural convection phenomenon of a fluid which initially at rest (t = 0)
produces a sequence of adjacent convection cells along the longitudinal direction
(x axis) due to the temperature difference between its upper (cold) and lower
(hot) walls.

No-slip boundary conditions are imposed in all the walls and the pressure
is prescribed as p(2.0, 0.5, 0.0) = 0.0. The dimensionless cold temperature is
Tc = −0.5 and the hot Th = 0.5. The physical problem is defined setting the
Reynolds Number as Re = 4, 365, Grashof number as Gr = 41, 666.66, the Peclet
number as Pe = 3, 142.8 and Froude number4 as Fr = 0.6432.

Only one refinement/coarsening level was allowed at every 25 time-steps.
For the statistical adaptivity scheme the refinement fraction is rf = 0.6 and
coarsening fraction is rc = 0.01. The linear tolerance for GMRES(30) together
with the BILU(1) and reordering by RCM method is 1.0× 10−6. The nonlinear
tolerance is 1.0× 10−5 and the constant time step size is ∆t = 5.0.

The steady-state velocity vectors are shown in Fig.(3) and the temperature
over the final adapted mesh is plotted in Fig.(4).

4 Besides not introduced in the Navier-Stokes equations presented in section 2.1, the
Froude number is used here to take into account the fluid’s weight in the calculation.
More details about how to incorporate the Froude number in the dimensionless
Navier-Stokes equations may be found in [3].

Parallel Adaptive Simulation of Incompressible Viscous Flow 11

Fig. 3. Steady-state velocity vectors.

Fig. 4. Temperature at steady-state and final adapted mesh.

The Fig. (5) presents the speedup for the total simulation time, the total time
for solving the Navier-Stokes and transport problems and the AMR/C procedure
considering in the numerator the time spent with 16 CPU’s, i.e.,

Sp =
τ16
τp

. (25)

12 Andre Rossa and Alvaro Coutinho

Fig. 5. Speedup for the Rayleigh-Bénard problem.

The AMR/C time does not reach 10% of the total simulation time. We may
observe from the results of Fig.(5) that the present simulation achieves a good
parallel performance, that is, speed up around 3 for the total simulation with 64-
cores run with respect to 16-cores run (over 3 for the Navier-Stokes simulation).

Despite the good overall performance, it is observed that the adaptive pro-
cedure does not scale as well as the linear solvers (S64 = 1.22). The poor per-
formance of the AMR/C procedure in the current libMesh release is due to
the fact that all mesh data are replicated on all cores, which increases memory
requirements and communication per core.

4.2 Temperature-driven gravity current with AMR/C

For the simulation of a temperature-driven gravity current with mesh adaptivity,
we consider a slice domain5 Ω = [0, L]× [0, H/8]× [0, H] where the nondimen-
sional length and height are L = 0.8 and H = 0.1. The left half of the channel
is initially filled with the cold fluid and the right half is filled with hot fluid.
The Fig. (6) shows the initial configuration and a detail of the refinement at the
center of the domain.

The dimensionless cold temperature is set to Tc = −0.5 and the hot Th = 0.5.
We consider no-slip boundary conditions on the bottom, left and right walls.

5 To emulate a 2D simulation domain from a mesh composed of 3D elements, the slice
domain is positioned parallel to the xz plane and the perpendicular direction (0, y, 0)
is discretized with only one element except at regions where the mesh adapts. For
all nodes on the mesh vy = 0.0 is imposed.

Parallel Adaptive Simulation of Incompressible Viscous Flow 13

(a)

(b)

Fig. 6. Initial lock-exchange configuration: (a) View of the slice domain and (b) Mesh
detail.

Free-slip boundary conditions are imposed on the top one. Thus free and no slip
fronts may be considered in the same simulation.

We do not consider the reduced gravity for the definitions for the dimension-
less parameters and set the Reynolds number as Re = 1.0×106 and the Grashof
is set to Gr = 1.0× 1010. For this simulation, we disregard the diffusion term of
the transport equation (3). So, the Peclet number does not need to be defined.
We set the exponent of the nonlinear diffusion operator (20) as β = 1 and the
time step is set to ∆t = 0.025.

We compare the results from the present adaptive simulation with those
obtained using fixed structured mesh with characteristic length l = 0.00078125
(given by the hexahedron edge). The dimensionless distance of the front head

14 Andre Rossa and Alvaro Coutinho

between the two fluids X = |x− 0.4| is tracked over time t. The distance from
the initial position (x = 0.4) of both fronts using the fixed mesh is plotted in
Fig. (7)

Fig. 7. Plot of the dimensionless distance of top and bottom fronts.

As expected, free-slip front (top) reaches the vertical wall before the no-slip
(bottom) does. Figure (7) shows a good agreement between our results and those
obtained by the reference [10]. The results from [10] were obtained using a fixed
2D mesh formed by triangles which characteristic length is l = 0.00025.

The Fig (8) shows the temperature distributions and the meshes at two
different times with AMR/C at every 10 time-steps. The refinement fraction is
set as rf = 0.95 and the coarsening fraction is rc = 0.01. In order to prevent the
size of the elements become too small, we allowed only 4 refinement-levels. The
Kelvin-Helmholtz billows are captured by the mesh as the front evolves after the
release.

Through the mesh adaptivity simulation, the largest number of elements
reached is approximately 30,000. If a fixed structured mesh had been used, to
achieve the same refinement level, it would take approximately 131,000 hex-
aedrons. Therefore, with mesh adaptation we can, in this problem, compute a
solution with one order of magnitude less elements without compromising the
solution accuracy.

Parallel Adaptive Simulation of Incompressible Viscous Flow 15

(a)

(b)

(c)

(d)

Fig. 8. Adaptive meshes and temperature distribution: (a) Adaptive mesh at t = 12.5,
(b) Temperature distribution at t = 12.5, (c) Adaptive mesh at t = 25.0 and (d)
Temperature distribution at t = 25.0.

5 Conclusions

The libMesh framework was used to implement the stabilized SUPG/PSPG
finite element formulation for the parallel adaptive solution of incompressible
viscous flow and advective-diffusive transport using a three-linear hexahedral ele-
ment. Good numerical results were obtained for parallel executions with adaptive
meshes. AMR/C allows the representation of multiple flow scales and improves
resolution where needed. It was possible to track the Kelvin-Helmholtz billows
present in the temperature-driven gravity current problem.

References

1. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White, A.:
Sourcebook of Parallel Computing. Morgan Kaufmann Publishers (2003)

2. Kirk, B.S., Peterson J.W., Stone R., Carey G.F.: Libmesh: a c++ library for parallel
adaptive mesh refinement/coarsing simulations. Journal Engineering with Comput-
ers, 22, 237-254 (2006)

3. Griebel, M., Dornseifer, T., Neuhoeffer, T.: Numerical Simulation in Fluid Dynam-
ics: A Practical Introduction. SIAM (1997)

16 Andre Rossa and Alvaro Coutinho

4. Tezduyar, T.: Stabilized finite element formulations for incompressible flows com-
putation. Advances in Applied Mechanics, 28, 1-44 (1992)

5. Härtel, C., Meiburg, E., Necker, F.: Analysis and direct numerical simulation of the
flow at a gravity-current head. Part 1. Flow topology and front speed for slip and
no-slip boundaries. Journal of Fluid Mechanics, 418, 189-212 (2000)

6. Bazilevs, Y., Calo, V.M., Tezduyar, T., Hughes, T.J.R.: YZβ Discontinuity Captur-
ing for Advection-Dominated Processes with Application to Arterial Drug Delivery.
International Journal for Numerical Methods in Fluids, 54, 593-608 (2007)

7. Bank, R., Welfert B.: A posteriori error estimates for the stokes problem. Journal
of Numerical Analysis, 28, 591-623 (1991)

8. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis.
Wiley Interscience (2000)

9. Carey, G.: Computational grids: generation, adaptation, and solution strategies.
Taylor & Francis (1997)

10. Hiester, H., Piggot, M., Allison, P.: The impact of mesh adaptivity on the gravity
current front speed in a two-dimensional lock-exchange. Ocean Modeling, 38, 1-21
(2011)

11. Kelly, D., Gago, J., Zienkiewicz, O., Babuska, I.: A posteriori error analysis and
adaptive processes in the finite element method: Part I - Error analysis. International
Journal for Numerical Methods in Engineering, 19, 1593-1619 (1983)

12. Liu, W., Sherman, A.: Comparative Analysis of the Cuthill-McKee and the Re-
verse Cuthill-McKee Ordering Algorithms for Sparse Matrices. Journal on Numeri-
cal Analysis, 13, 198-213 (1976)

13. Camata, J.J., Rossa, A.L., Valli, A.M.P., Catabriga, L., Carey, G.F., Coutinho,
A.L.G.A.: Reordering and incomplete preconditioning in serial and parallel adaptive
mesh refinement and coarsening flow solutions. International Journal for Numerical
Methods in Fluids, 69, 802-823 (2012)

14. Benzi, M.: Preconditioning Techniques for Large Linear Systems: A Survey. Journal
of Computational Physics, 182, 418-477 (2002)

