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Abstract. Several propagation models have been developed to predict
forest fire behaviour. They can be grouped into empirical, semi-empirical,
and physical models. These models can be used to develop simulators and
tools for preventing and fighting forest fires. Nevertheless, in many cases
the models present a series of limitations related to the need for a large
number of input parameters. Furthermore, such parameters often have
some degree of uncertainty due to the impossibility of measuring all of
them in real time. Therefore, they have to be estimated from indirect
measurements, which negatively impacts on the output of the model.
In this paper we present a method which combines Statistical Analysis
with Parallel Evolutionary Algorithms (taking advantage of the compu-
tational power provided by High Performance Computing) to improve
the quality of model’s output.

1 Introduction

Different propagation models have been developed to predict fire behaviour.
They can be classified into empirical, semi-empirical, and physical models [8].
The probable fire behaviour is predicted in empirical models from average condi-
tions and accumulated knowledge obtained from laboratory and outdoor exper-
imental fire or from historical fires. Semi-empirical (semi-physical or laboratory
models) are those models based on a global energy balance and on the assump-
tion that the energy transferred to the unburned fuel is proportional to the energy
released by the combustion of the fuel; one of the most important among these
models is the pioneering work of Rothermel (1972 and 1983) [21, 22]. Finally,
physical (theoretical or analytical) models are based on physical principles and
have the potential to accurately predict the parameters of interest over a broader
range of input variables than empirically based models do. These models can be
used to develop simulators and tools for preventing and fighting forest fires.
Some old and current examples are Behave-Plus [1], FARSITE [9], FIREMAP
[2], FireStation [15], WRF-Fire [16], XFire [14], etc.

According to Fons [10] the relevant factors that affect the rate of spread and
shape of a forest fire front are the fuel type (type of vegetation), humidity, wind
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speed and direction, forest topography (slope and natural barriers), and fuel
continuity (vegetation thickness). Therefore, models require a set of input para-
meters, including vegetation type, moisture contents, wind conditions, and so on,
and they provide the evolution of the fire line in the successive simulation steps.
However, the result obtained after the direct application of a simulator (known
as Classical Prediction and explained in Section 2) usually differs from reality
because of the difficulty of providing accurate input values to the model. Given
this uncertainty, we propose an alternative method, that tries to determine the
possible fire behaviour based on Statistical Analysis [19] and Parallel Evolution-
ary Algorithms (PEAs) [18] as optimization method. This method corresponds
to an improvement of a previous methodology based on Statistical Analysis and
High Performance Computing, which has been modified by the combination
with Evolutionary Algorithms to improve the prediction level and reduce the
execution time.

Clearly, the simulation of the spread of forest fires is a challenge from the
computational point of view, given the complexity of the models involved, the
need for efficient numerical methods and resource management for results. In
this context, the method presented in this paper is an important tool for the
prevention and prediction of forest fires, as it provides more complete information
about the potential fire behaviour. This is a general method which could be
applied on different propagation models (e.g. floods, snow avalanches, landslides,
etc.), but here we only present its application to forest fire prediction.

In the remaining sections of this paper we describe the direct use of a simula-
tor in section 2 (known as Classical Prediction); section 3 shows the predecessor
of the current method (Statistical System for Forest Fire Management - S2F 2M
[4, 5]) and section 4 describes the new methodology, implemented in a system
called Evolutionary Statistical System (ESS) [3]. In section 5 we compare both
methods using a set of real cases of forest fires and also we comment on the
obtained results related to the execution time and the speed-up obtained when
we work on a cluster computer. Finally, we present the main conclusions.

2 Classical Prediction

Classical Prediction approach is depicted in Fig. 1. In this scheme, FS corre-
sponds to the underlying fire simulator, which will be seen as a black box. RFL0
is the real fire line at time t0 (initial fire front), whereas RFL1 corresponds to
the real fire line at t1. If the prediction process works, after executing FS (which
should be fed with the corresponding input parameters and RFL0) the predicted
fire line at time t1 (PFL) should coincide with the real fire line (RFL1).

As we mentioned previously, models require static parameters (information
about topography), parameters that can change very slowly (type of vegetation),
parameters that can change frequently (moisture content), and parameters that
are completely dynamic (like wind conditions). The simulator will not work
properly without this set of parameters. The precision of these parameters is
a very important point in prediction of the behaviour, and in many cases it is
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Fig. 1. Diagram of Classical Prediction of forest fire propagation (FS: Fire Simulator;
PFL: Predicted Fire Line; RFLX: Real Fire Line on time X)

impossible to carry out some types of measurements, particularly in a real fire
situation.

Generally, the obtained prediction using this approach does not match the
reality. One reason for the discrepancy between real and simulated propagation
stems from the difficulty of feeding the model with accurate input values. Uncer-
tainties in the input variables can have a substantial impact on the result errors
and should be considered.

In this context, the prediction of the fire line behaviour cannot be considered
to be reliable for two reasons: on the one hand, the difficulties in making an
accurate estimate of the parameters and, on the other hand, the resulting pre-
diction is based on a single simulation, which does not constitute a reasonable
basis for making a decision given the uncertainty of the parameters.

3 Statistical Method for Uncertainty Reduction

The statistical method for uncertainty reduction [4–6] has been the result of
the combination of various research projects. This method has as its bases the
concepts of statistical analysis and distributed computing. Basically, the method
finds a pattern of behaviour of the model without performing a specific analysis
of each scenario (where a particular setting of the input parameter values de-
fines an individual scenario). All the possible scenarios are discretely generated
considering a certain domain by a factorial experiment [19] and the model is
evaluated with each set of values. The results are combined to determine the
trend in the behaviour of the model, adjusting to the current observation of it.
The pattern found is then taken to predict the next step.

This method requires a large number of operations, and therefore is very time
demanding. For this reason, we applied a parallel computing scheme for its im-
plementation. Because of this, we used multiple computational resources working
in parallel to reduce the time. Keeping in mind the nature of the problem, we
applied a Master-Worker paradigm [12, 17], because the problem we face can be
divided into multiple partitions and the same calculations can be applied over



each data subset. Therefore, we face a problem that can be solved using domain
decomposition: a main processor can calculate each combination of parameters
and send them to a set of Workers. These Workers carry out the simulation in
parallel, taking into account several combinations of parameters, and return the
partial results to the Master, which aggregates all these individual results at
each iteration. Also, the Master process is responsible for the statistical stage
and it is in charge of the remaining prediction technique.

A scheme of a whole prediction system is presented in Fig. 2. As we can
see, the process of prediction needs a calibration stage at the beginning (time
period that goes from t0 to t1) to firstly obtain a Kign value (Key Ignition value)
to start up the prediction chain. For every i from 1 to n, both the prediction
operation for time ti and the calibration stage to obtain the Kign to be used
in time ti+1 will overlap at time ti. This situation is the one depicted in Fig.
2. As can be observed, the output generated by the SS box (Statistical Stage)
is used for a double purpose. On the one hand, the probability maps are used
as an input of the SK box (Search Kign) to search for the current Kign, which
will be used at the next prediction time. In this stage, a Fitness Function (FF)
is used to evaluate the probability map. On the other hand, the output of SS
box enters the Fire Prediction box (FP), which will be in charge of generating
the prediction map taking into account the Kign evaluated at previous time.
This process will be repeated during the execution as the system is fed with new
information about the fire situation.
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Fig. 2. Detailed diagram of S2F 2M (FS: Fire Simulator; CS: Calibration Stage; SS:
Statistical Stage; SK: Search Kign Stage; FF: Fitness Function; FP: Fire Prediction;
PFL: Predicted Fire Line; RFLX: Real Fire Line at time X)

Although the statistical method can be used to solve various Grand Challenge
Problems, as a case of study, the method has been applied on a behavioural model
of forest fire propagation. As a result, we developed a system called Statistical
System for Forest Fire Management (S2F 2M), which is the product of the com-
bination of applying the proposed method with the simulator fireSim (fireSim is
the implementation of a fire behaviour simulator based on the Rothermel model



[21] and implemented with the library fireLib [7]). For a detailed description of
the method, we suggest the reader to consult [4, 5].

4 Evolutionary Statistical System

The improvement and modification of the statistical method discussed in the
previous section has resulted in a new method that combines the strength of
three components: uncertainty reduction, evolutionary algorithms and paral-
lelism, that is why the new method has been called Evolutionary Statistical
System [3]. The improvement of the method is related to the introduction of
features of PEAs in the calibration step of the statistical method. As we seen
in the previous section, the statistical phase of the methodology includes all the
results of a series of cases that arise as some combination of the possible re-
sulting values (within valid ranges) of the parameters that exhibit uncertainty.
Clearly, there is a certain percentage of cases that do not contribute significant
values to the global result, whether they are now redundant, or because they
are too far from reality (and thus, could be considered as negative cases that
ultimately degrade the result provided by the method). To avoid this problem is
that we have decided to apply the Evolutionary Algorithms (EAs), whose basis
is explained in more details in the next section.

4.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) mimic the concept of natural biological evolution:
they operate on a population of potential solutions applying the principle of
survival of the fittest [11]. In each iteration EAs create a new set of approaches
through a process of selecting individuals according to the level of fitness for the
problem domain (through the fitness function that quantifies this feature) and
perform a recombination of them using operators that mimic natural genetics.
This process leads to the evolution in the population of individuals that have
best adapted to the environment just as happens in natural adaptation.

The EAs model natural processes such as selection, crossover, mutation, mi-
gration, locality and the notion of neighbourhood, working on populations of
individuals rather than on unique solutions. Thus, the search can be performed
in parallel, thus providing a number of potential solutions instead of one. This
scheme is known as Parallel Evolutionary Algorithms (PEAs). According to the
amount of populations involved in the algorithm, the treatment and the op-
erators PEAs can be classified in three broad groups: Unique Population and
Parallel Evaluation, Unique Population and Overlapped Neighbourhoods, and
Multiple Populations and Migration. In this work, we consider the first group.

In each generation the fitness of each individual in the population is evalu-
ated in parallel. Multiple individuals are stochastically selected from the current
population (depending on fitness), and modified (by recombination or by ran-
dom mutation) to form a new population. The fitness is defined in terms of the
genetic representation and measures of quality of the solution represented.



The execution of the PEA may finalize by various criteria. One method is
to finish after a predetermined number of iterations. Another way is to check
whether the measure of population quality has improved or not after a certain
number of generations. Another is to finish when all individuals are identical,
which can only happen when not using the mutation.

Evolutionary algorithms are a powerful tool for solving different kinds of
problems [20]. However, sometimes this type of methodology iterates for a long
time and does not converge or converges to a local optimum. This is one of the
reasons why it is interesting combine the use of evolutionary methods with paral-
lel computing. However, given the use of evolutionary algorithms in optimization
problems, where they have found very good results, we propose the application
of this methodology in combination with statistical methods, as discussed in the
following section.

4.2 Methodology of the Evolutionary Statistical System

The Evolutionary Statistical System (ESS), classified as Data-Driven methods
with Multiple Overlapping Solution, is an improvement of the S2F 2M method
previously commented. It combines the original uncertainty reduction method
implemented in S2F 2M with the advantages that offer the Parallel Evolutionary
Algorithms (PEAs), dealing with a population of scenarios relevant to the study.
ESS, like its predecessor, is based on statistics, mainly on the concept of factorial
experiment [19], where the combination of several factors (input parameters)
defines a scenario. In this case, each scenario is represented by an individual in
a population of possible solutions.
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Fig. 3. Diagram of ESS (FS: Fire Simulator; PEA: Parallel Evolutionary Algorithm;
OS: Optimization stage; SS: Statistical System; SK: Search Kign; FF: Fitness Function;
CS: Calibration stage; FP: Fire Prediction; PFL: Predicted Fire Line, RFLX: Real Fire
Line on time X)

A scheme of ESS is presented in Fig. 3. As can be observed, the system is
divided in two general stages: an Optimization Stage (OS) that implements the



parallel evolutionary algorithm (PEA box), and the Calibration Stage (CS) that
is in charge of the statistical method. OS iterates until the population reaches a
certain level of quality. For each individual FS and the fitness are calculated in
parallel. Then, every individual will be included in the Statistical System (SS
box). Similarly to S2F 2M , the output of SS (a probability map) has a double
purpose. On the one hand, the probability maps are used as the input of the
SK box (Search Kign) to search for the current Kign (a key number used to
make a prediction), which will be used at the next prediction time. In this stage,
a Fitness Function (FF) is used to evaluate the probability map. On the other
hand, the output of SS box enters the Fire Prediction box (FP). FP will be in
charge of generating the prediction map taking into account the Kign evaluated
at previous time. All this process will be repeated during the execution as the
system is fed with new information about the fire situation.

The architecture of the ESS is based on the Master-Worker paradigm [12, 17]:
In each iteration the Master distributes an individual per Worker; the simulation
of the model and the evaluation of fitness function are applied over each individ-
ual (tasks carried out by the Workers), returning the results to the Master. This
process is repeated until every individual in the population is treated. Finally
the Master evolves the population, aggregates the partial results and makes the
prediction for each time step.

5 Experimental Results

This section compares the results obtained after applying the original statistical
method (S2F 2M) and the Evolutionary Statistical System (ESS) described in
this paper. To that end we have used four cases of controlled burns. They were
made in the field (Fig. 4), particularly in a hill of Serra de Lousã (Gestosa,
Portugal). The burns were part of the SPREAD project [23]. These experiments
were very useful to collect experimental data, to support the development of new
concepts and models, and to validate existing methods or models in various fields
of fire management. We have not included the results of the classical method
because the values obtained are low and do not contribute information to this
work. In addition, previous studies have shown that the values obtained by
applying the statistical method surpasses the quality of the prediction achieved
by the classic approach [5].

Along the progress of burning, discrete steps were defined to represent the
progress of the fire front. Therefore, we consider various time instants t0, t1, t2...
etc. In Table 1 can be appreciated the characteristics (size and slope) of the land
used for each experiment. In order to gather as much information as possible
about the fire-spread behaviour, a camera recorded the complete evolution of
the fires. The videos obtained were analyzed and several images were extracted
every certain period of time. From the images, the corresponding fire contours
were obtained and converted into a suitable format so they could be interpreted
by the methods.



Fig. 4. Real fire during the burns in the Gestosa area.

Table 1. Dimensions and slopes of the plots used in experiments.

Experiment Width (m) Length (m) Slope (◦)
1 58 50 21
2 89 91 21
3 95 123 21
4 20 30 6

In experiments 1 and 2 the cell size was 1 m2, and in experiments 3 and 4
the cell size was 0.333 m2. The remaining parameters such as wind conditions
and moisture content were variable.

5.1 The fitness function

It is necessary to define a criterion to compare the prediction resulting from
each method with the real situation. To evaluate the system response we have
defined a fitness function. Since the simulator uses an approximation based on
cells, the fitness function is defined as a quotient. The following equation shows
the expression:

Fitness =
(#cells

⋂−#IgnitionCells)
(#cells

⋃−#IgnitionCells)

where #cells
⋂

represents the number of cells in the intersection between the
simulation results and the real map, #cells

⋃
is the number of cells in the union

of the simulation results and the real situation, and #IgnitionCells represents
the number of burned cells before starting the simulation.

A fitness value equal to one corresponds to the perfect prediction because it
means that the predicted area is equal to the real burned area. On the other
hand, a fitness equal to zero indicates the maximum error because, in this case,
our experiment did not coincide with reality at all.



5.2 Comparison

According to the information already known about the experiments and the
models of Rothermel [21] for some of the parameters, certain ranges have been
specified (in particular those parameters that exhibit uncertainty). A part of this
information has been measured during the experiment, and the remainder has
been taken from standard values used by BehavePlus [1].

The experiments 1, 3 and 4 belong to cases of fires started at the base of the
field through pyrotechnic devices in a linear way. Meanwhile, in experiment 2,
the fire originated in a single point. After execution of the methods, the fitness
values found are shown in Figure 5. We can see that in all four cases, ESS
performs better compared to the original version of the method. However, at
certain times, the values found may be similar or even slightly lower than the
results of the original method (this happens in Experiment 2 at minute 7.5 and
in Experiment 3 at minute 12).
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Fig. 5. Fitness comparison between the S2F 2M and ESS for four experiments.

It is important to emphasize that for calibration and prediction purposes
these methods need one real fire line more than the classical prediction, so we
cannot provide suggestions at the first time t1, i.e., along the first step of these
methods it is only possible to apply the calibration stage whose result will be
used in t2. Thus, from t2 to tn, every step ti of the methods executes both CS



and FP, basing their FP in the Kign provided by the previous step ti−1 (see Fig.
2 and 3). This is the reason why the figure shows the results from t2 considered
in each experiment.

Another important point to highlight is to mention that the shown values
for ESS are the average of ten executions. In the case of S2F 2M , this is not
necessary because it gives a deterministic output.

5.3 Parallelism and Speedup

The results were obtained by executing both systems on a LINUX cluster (12
processors AMD64 2G RAM and Gigabit Ethernet 1000 Mbps) under an MPI
environment [13]. The performance gain has been analyzed using the measure
known as Speedup [12], which is defined as the ratio of the time taken to solve
a problem on a single processing element to the time required to solve the same
problem on a parallel computer with p identical processing elements.

The numbers of processors used were 1, 2, 4, 6, 8, 10 and 12 (although the
graph of speedup is usually designed with p equal to successive powers of 2).
Figure 6 shows the values obtained as an average of all experiments.
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The continuous line represents the linear case (or ideal Speedup). As we can
see, both methods have a speedup relatively good (S2F 2M a bit better than
ESS). For the purposes of a fair comparison, in both cases were performed the
same number of simulations. Thus, in addition to the graph, the execution times
are also similar (ESS takes on average 10% less execution time). However, in ac-
tual executions, ESS usually takes even less time because in principle, the number



of iterations depends on when it finds individuals who meet the expected fitness,
and this usually happens before in ESS that in S2F 2M (remember that S2F 2M
is deterministic and exhaustive method, while ESS is a not deterministic one).
For instance, for Experiment 4, ESS can take around 35 min to find individuals
with fitness equal to 0.85, or it can spend 140 min looking for individuals with
fitness equal to 0.95. In conclusion, there is a trade-off between time and quality,
and depends on the user to configure certain parameters to emphasize either the
time restriction or the expected quality.

6 Conclusions

In this work, a method is described, which represents a major enhancement com-
pared to previous methodologies. As we have seen, the techniques that combine
high performance computing with statistical methods have excellent ability to
solve or reduce the problem of uncertainty in input parameters. For this reason,
it is of great interest the ongoing research on this subject, so as to optimize and
evolve on the approaches and methods already developed to maximize the results
achieved. Then, from S2F 2M we have arrived at the concept of Evolutionary
Statistical System (ESS). To do this, we combined the power of the statisti-
cal calculation with capabilities provided by parallel evolutionary algorithms,
achieving results that actually improve the original methodology S2F 2M based
solely on statistical calculation and high performance computing. Both methods
have been described throughout the present work. They correspond to meth-
ods to reduce uncertainty in the input parameters, in this case applied to the
prediction of forest fires spread. Given the costs, risks and obvious difficulties
for design multiple fires in real plots to obtain reliable data for experimentation
and validation of the methods, the experiments were conducted on four real fires
considering different instants of time in each case. In addition to significantly
improve the accuracy of the prediction quality of the classical method, one of
the most important features of both methods is that they are general enough to
be used on different models (floods, avalanches, etc.). Thus, the combination of
evolutionary computation, parallelism and uncertainty reduction is a promising
option for tackling various Grand Challenge Problems, as in this case it is the
prediction of forest fire behaviour.

In this first approach of ESS, we decide apply parallelism only in the evalu-
ation of the individuals, with the goal of gradually increase the degree of paral-
lelism to compare the results offered by each alternative of PEAs. Further study
should focus on the analysis and tuning of the method to obtain the best possible
results and compare it with other methods.
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nieŕıa. Limusa Wiley (2002)

20. Nelson, K.M.: Applications of evolutionary algorithms in mechanical engineering.
(1997) http://digitool.fcla.edu/dtl publish/34/12514.html (Accessed on May 2012)

21. Rothermel, R. C.: A mathematical model for predicting fire spread in wildland
fuels, Res. Pap. INT-115, US Dept. of Agric., Forest Service, Intermountain Forest
and Range Experiment Station. (Ogden, UT.) (1972)



22. Rothermel, R. C.: How to predict the spread and intensity of forest fire and range
fires. Gen. Tech. Rep. INT-143, US Dept. of Agric., Forest Service, Intermountain
Forest and Range Experiment Station. (Ogden, UT.) (1983)

23. Viegas, D.X. (Coordinator) et al., Project Spread - Forest Fire Spread Prevention
and Mitigation (2004) http://www.algosystems.gr/spread/ (Accessed on May 2012)


