
Biclustering of very large datasets
with GPU tecnology using CUDA

Javier Arnedo-Fdez, Igor Zwir?, and Roćıo Romero-Zaliz

Dpt. of Computer Science and Artificial Intelligence
University of Granada

Spain
{arnedo,igor,rocio}@decsai.ugr.es

Abstract. In this work we report our first research steps on using GPUs
to accelerate biclustering of very large data sets, which are common
in real world applications such as biomedical and biotechnological. The
bicluster problem is NP-hard, thus, finding an optimal solution could
be time consuming, especially when dealing with large data sets. We
present a GPU-accelerated implementation of the biclustering proba-
bilistic move-based algorithm called FLOC, which can efficiently and
accurately approximate biclusters with low mean squared residues with-
out the impact of random interference. Results show that when the size
of the dataset increases, the GP-GPU version of FLOC solves the biclus-
tering problem much faster than the CPU FLOC version running on a
single CPU core.

Keywords: Data-mining, Bioinformatics, Biclustering, Parallel algorithm,
GPU, CUDA, GP-GPU.

1 Introduction

There has been a substantial interest in scientific and engineering computing
community to speed up the CPU-intensive tasks on graphical processing units
(GPUs) with the development of General Purpose GPU (GP-GPU) systems,
since GPUs have a very large memory bandwidth and computational power.
Cluster analysis is a widely used technique for grouping a set of objects into
classes of similar objects and commonly used in many fields such as data mining,
pattern recognition and bioinformatics [1, 2] and a suitable application for the
GPUs intensive power of calculation. A special case of clustering is biclustering
where there is a simultaneously grouping of rows and columns to uncover sub-
matrices of a given data matrix that optimize a desired objective function [3].

There are many biological applications of biclustering algorithms mainly fo-
cused on DNA microarray studies and ranges from gene sample classification,
genetic pathways identifcation, gene co-regulation study, transcriptional regula-
tory modules identification, biomarkers discovery, drug design, single nucleotide

? This work is supported by University of Granada - GREIB.PT.2011.20 -
GREIB.AL.2011.06.

2 Javier Arnedo-Fdez, Igor Zwir, and Roćıo Romero-Zaliz

polymorphism (SNP) analysis, and genetic interactions identification [4]. Even-
though microarray studies are beign replaced by newer and sophisticated meth-
ods, like next generation sequencing (NGS), biclustering techniques are still a
useful tool for their analysis [5, 6].

Although there is a need to build faster biclustering algorithms that can deal
with very large datasets, there is, to our best knowledge, only one biclustering
GP-GPU implementation published [7].

2 Background

2.1 Parallel architectures

While conventional CPU clusters still dominate the High-Performance Comput-
ing (HPC) market, GPUs are gaining popularity as cost-effective HPC accelera-
tors. GPUs provide a huge amount of fine-grain parallelism, since thousands of
threads may be running concurrently [7].

GP-GPU systems have become increasingly popular in recent years as a
means of delivering large computational power to the desktop market. Such sys-
tems consist of a host CPU with the GPU connected through a PCI-Express
link. GPUs support high computational rates (in terms of floating point oper-
ations per second) and have a high bandwidth to memory on the GPU board.
This makes such systems ideal for throughput oriented applications [8].

Special libraries and packages were developed for building GP-GPU system,
like the API extension the C programming language called CUDA [9] (Compute
Unified Device Architecture) for NVIDIA cards and OpenCL [10]. In this work
we will use CUDA to code normal C functions and run them on the GPU’s
stream processors, thus taking advantage of a GPU’s ability to operate on large
matrices in parallel, while still making use of the CPU when appropriate.

2.2 Biclustering

In gene expression analysis a bicluster is defined as a submatrix spanned by a
set of genes and a set of samples. Alternatively, a bicluster may be defined as
the corresponding gene and sample subsets [11].

The concept of bicluster was introduced by Cheng and Church [12] to capture
the coherence of a subset of genes and a subset of conditions. Unlike previous
methods that treat similarity as a function of pairs of genes or pairs of conditions,
the bicluster model measures coherence within the subset of genes and condition.
The coherence score is defined as a symmetric function of genes and conditions
involved and thereby the biclustering is a process of simultaneous grouping of
genes and conditions. The so called mean squared residue was employed and
applied to expression data transformed by a logarithm and augmented by the
additive inverse. While the mean squared residue represents the variance of the
selected genes and conditions with respect to the coherence, the goal of biclus-
tering is to find biclusters with low mean squared residue [13]. It has been proven

Biclustering of very large datasets with GPU tecnology using CUDA 3

that the problem of finding biclusters satisfying these criteria is NP-hard in gen-
eral. Therefore, a set of heuristic algorithms were designed by Cheng and Church
[12] to either find one bicluster or a set of biclusters which consist of iterations
of masking null values and discovered biclusters, coarse and fine node deletion,
node addition, and the inclusion of inverted data.

2.3 FLOC

Cheng and Church original heuristics suffer from some serious drawback that
produce the masking of null values and discovered biclusters with random num-
bers that may result in the phenomenon of random interference which in turn
impacts the discovery of high quality biclusters. To address this issue and to
further accelerate the biclustering process, a probabilistic move-based algorithm
called FLOC [13] was developed for generalizing the model of bicluster to in-
corporate null values that can discover a set of possibly overlapping biclusters
simultaneously.

The data is represented in the form of a matrix where the rows correspond to
the genes and the columns correspond to the conditions. The FLOC biclustering
algorithm starts from a set of seeds (initial biclusters) and carries out an iterative
process to improve the overall quality of the biclustering. At each iteration, each
row and column is moved among biclusters to produce a better biclustering in
terms of lower mean squared residues. The best biclustering obtained during each
iteration will serve as the initial biclustering for the next iteration. The algorithm
terminates when the current iteration fails to improve the overall biclustering
quality [13].

3 GP-GPU implementation of FLOC

The FLOC algorithm is implemented inside a Bioconductor package called Bi-
cARE [14]. The complexity of this FLOC algorithm implementation is O((N +
M)2 × k × p), where N and M are the number of rows and columns of the
original data matrix D, while k is the number of the biclusters to search for and
p is the number of iterations till termination [13]. Although the FLOC biclus-
tering method is faster than the original Cheng and Church approach, when N
and M are large the FLOC algorithm performance is quite slow for real world
applications where the number of genes and conditions can be very high.

To accelerate the FLOC algorithm we decided to implement a GPU version
of the original algorithm based on the CUDA programming model from NVIDIA
[9].

To detect which function or piece of code were the most time consuming, we
perfomed a profiling of the FLOC algorithm. The funtion which calculates of the
residue of a bicluster (see Definitions 1, 2, 3) is called several times during the
execution of the algorithm, each time performing O((M + N)× k) operations.

Definition 1. The residue of an entry dij of data matrix D in a bicluster (I, J),
where I ⊆ {1, . . . ,M} subset of genes, J ⊆ {1, . . . , N} subset of condition, is

4 Javier Arnedo-Fdez, Igor Zwir, and Roćıo Romero-Zaliz

Generate initial
biclusters

Determine best action
for each row and column

Perform the best action
for each row and column

sequentially

Improved?

END
No

Yes

START

PHASE 1

PHASE 2

Calculate r for each
cell in the data matrix

ij

Sum all r in each
GPU block

ij

Calculate action cost
based on rIJ

GPU
code

CPU
code

Fig. 1. GP-GPU FLOC flowchart. In gray we show the section of the flowchart that is
parallelized using GP-GPU.

rij = dij − diJ + dIJ if dij is specified in the bicluster, else rij = 0. diJ stands
for the sum of all dij in J , while dIJ stands for the sum of all dij for all I and
J .

Definition 2. The volume vIJ of a bicluster (I, J), where I ⊆ {1, . . . ,M} subset
of genes, J ⊆ {1, . . . , N} subset of condition, is defined as the number of specified
entries dij such that i ∈ I and j ∈ J .

Definition 3. The residue of a bicluster (I, J) is rI,J =
∑

i∈I,j inJ r2ij
vIJ

, where
I ⊆ {1, . . . ,M} subset of genes, J ⊆ {1, . . . , N} subset of conditions, rij is the
residue of the entry dij and vij is the volume of the bicluster.

To accelerate the calculus of the residue fuction we created a function to
be executed in each core of a GPU producing the calculation for a specific cell
of the data matrix and its posterior sum. Each cell (i, j) of the data matrix
calculates r2ij . Afterwards, the sum of all cell residues are performed in the same
GPU device for each block independently, avoiding the overhead of transmitting
all data from device to CPU. Finally, in the CPU the sum of every block is
calculated and divided by the volume of the bicluster vIJ (Figure 1).

4 Experiments and Results

Several experiments were performed to analyze the performance of our GPU-
FLOC implementation.

Biclustering of very large datasets with GPU tecnology using CUDA 5

First, we wanted to see if the size of the data matrices used for biclustering
was actually an issue as we thought it would be. Therefore, we fixed all FLOC
parameters but the size of the data matrices and run the original and improved
FLOC algorithms. We created randomized matrices for sizes 10 × 10, 50 × 50,
100 × 100, 200 × 200, 300 × 300, 500 × 500, 1000 × 1000 and 2000 × 2000. For
each size we created 5 different random matrices, obtaining 40 matrices in total.
Figure 2 shows the results obtained using this synthetic dataset. Each point in
the plot represents the mean time spent in the biclustering calculation for each
matrix using different sizes. We can infer from this experiment that for small
matrices (Figure 2(a)) the CPU FLOC version is faster, but when the size of the
dataset is above aproximately 250× 250 the GPU-FLOC version is much more
efficient. All the previous experiments using the GPU-FLOC algorithm were run
using 256 threads in each block of a GPU device.

(a) CPU FLOC

Matrix size
Time consumption (s)
Mean Standard Deviation

10× 10 0.01 1.79e-03
50× 50 1.32 2.43e-02

100× 100 10.06 4.47e-03
200× 200 79.10 2.53e-01
300× 300 266.34 6.79e-01
500× 500 1233.60 1.41e+00

1000× 1000 9859.20 8.47e+00
2000× 2000 80152.90 1.56e+02

(b) GP-GPU FLOC

Matrix size
Time consumption (s)
Mean Standard Deviation

10× 10 2.40 6.98e-02
50× 50 15.36 1.23e-01

100× 100 29.47 2.18e-01
200× 200 100.88 2.54e-01
300× 300 170.40 4.34e-01
500× 500 483.94 8.48e-01

1000× 1000 2050.00 3.15e+00
2000× 2000 10449.70 1.47e+01

Table 1. Statistics for the performed experiments.

Second, we wanted to test which thread and block configuration was the best
option and whether changing these parameters made a substantial difference in
performance. The experimental framework used fixed all FLOC parameters but
the number of threads per block. Figure 2(b) shows the results. As we expected,
when the number of threads per block increases the performace of the GPU
implementation is faster, but when the number of threads is quite high the gain
is negligible. Nevertheless, using the slowest configuration of the GP-GPU FLOC
(i.e., 16 threads per block), its performance is much better than the CPU FLOC
algorithm.

All experiments were run in an Intel i7 980 machine with 16 GB of RAM
and Gainward GeForce GTX 480 video cards with 1.5 GB of RAM each.

5 Discussion

Preliminary results show that the use of GPU acceleration can substantially
improve the performance of biclustering methods. This improvement will help

6 Javier Arnedo-Fdez, Igor Zwir, and Roćıo Romero-Zaliz

0 500 1000 1500 2000

0
20

00
0

40
00

0
60

00
0

80
00

0

CPU FLOC vs. GP-GPU FLOC version

Matrix row and column size

Ti
m

e
(s

)

CPU FLOC
GP-GPU FLOC

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

(a) CPU FLOC vs. GP-GPU FLOC ver-
sion.

0 500 1000 1500 2000

0
20

00
0

40
00

0
60

00
0

80
00

0

GP−GPU FLOC using different number of threads per block

Matrix row and column size

T
im

e
(s

)

CPU FLOC
GP−GPU FLOC using 16 threads per block
GP−GPU FLOC using 64 threads per block
GP−GPU FLOC using 256 threads per block

(b) GP-GPU FLOC using different num-
ber of threads per block.

Fig. 2. CPU FLOC vs. GP-GPU FLOC version. Matrix size ranges from 10 × 10
to 2000 × 2000. The number of biclusters searched were 10 and 50 iterations were
performed, for both versions.

bioinformatic software to cope with the large amount of data that NGS technol-
ogy is providing.

Memory transfers from the host CPU to the GPU devices over the PCI-
Express bus is the main issue when programming GPU applications. The band-
width of PCI-Express is much lower compared to the on-board memory band-
width. This can then become the bottleneck of the system, especially if large
amounts of data need to be transferred over the bus [9]. It is therefore critical to
minimize the total data that is sent back and forth from CPU to GPU memory.
Also, there is a limit in the number of threads per block and blocks per grid
that has to be considered. Not all algorithms are suitable for GPU acceleration,
whatsmore a wrong implementation can cause the GP-GPU algorithm to be
even slower than the CPU version.

Future work will be devoted to test all possible GPU parameter’s configura-
tion including the use of more than one GPU, and to compare them with other
parallel architectures like MPI or PVM [15, 16].

References

1. Yildirim, A.A., Ozdoǧan, C.: Parallel wavelet-based clustering algorithm on gpus
using cuda. Procedia Computer Science 3(0) (2011) 396 – 400

2. Petros, X., Nikita, B., Neng, F., Panos M, P. In: Biclustering: Algorithms and
Application in Data Mining. John Wiley & Sons, Inc. (2010)

3. Busygin, S.: Biclustering in data mining. Computers & Operations Research 35(9)
(2008) 2964–2987

Biclustering of very large datasets with GPU tecnology using CUDA 7

4. Liu, L., Wei, D., Li, Y.: Handbook of Research on Computational and Systems
Biology: Interdisciplinary Applications. Igi Global (2011)

5. Wang, J., Tan, A., Tian, T.: Next Generation Microarray Bioinformatics: Methods
and Protocols. Methods in Molecular Biology. Springer Verlag (2011)

6. Huang, Q., Wu, L.Y., Qu, J.B., Zhang, X.S.: Analyzing time-course gene expression
data using profile-state hidden Markov model. In: IEEE International Conference
on Systems Biology. (2011)

7. Mej́ıa-Roa, E., Garćıa, C., Gómez, J., Prieto-Mat́ıas, M., Nogales-Cadenas, R.,
Tirado, F., Pascual-Montano, A.D.: Biclustering and classification analysis in gene
expression using nonnegative matrix factorization on multi-gpu systems. In: 11th
International Conference on Intelligent Systems Design and Applications. (2011)

8. Satish, N., Sundaram, N., Keutzer, K.: Optimizing the use of gpu memory in
applications with large data sets. In: HiPC. (2009) 408–418

9. Kirk, D.B., Hwu, W.m.W.: Programming Massively Parallel Processors: A Hands-
on Approach. 1st edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2010)

10. Khronos OpenCL Working Group: The OpenCL Specification, version 1.0.29. (8
December 2008)

11. Tanay, A., Sharan, R., Shamir, R.: Biclustering Algorithms: A Survey. Handbook
of Computational Molecular Biology (2004)

12. Cheng, Y., Church, G.M.: Biclustering of expression data. Proceedings / ... Inter-
national Conference on Intelligent Systems for Molecular Biology ; ISMB. Interna-
tional Conference on Intelligent Systems for Molecular Biology 8 (2000) 93–103

13. Yang, J., Wang, H., Wang, W., Yu, P., Ibm, U., Chapel, U., Ibm, H., Watson, T.J.,
Watson, T.J.: Enhanced biclustering on expression data. In: Proc. of 3rd IEEE
Symposium on BioInformatics and BioEngineering (BIBE03. (2003) 321–327

14. Gestraud, P., Brito, I., Barillot, E.: Bicare: Biclustering analysis and results ex-
ploration (2010)

15. Pacheco, P.S.: Parallel programming with MPI. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1996)

16. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.S.:
PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Par-
allel Computing. Scientific and engineering computation. (1994)

