
A Numerical Algorithm for the Solution of Viscous
Incompressible Flow on GPU’s

Santiago Costarelli1, Mario Storti1, Rodrigo Paz1, Lisandro Dalcín1, and Sergio
Idelsohn1,2,3

1 CIMEC-INTEC-CONICET-UNL, Guemes 3450, 3000 Santa Fe, Argentina
santi.costarelli@gmail.com, http://www.cimec.org.ar
2 International Center for Numerical Methods in Engineering (CIMNE),

Technical University of Catalonia (UPC), Gran Capitán s/n, 08034 Barcelona, Spain,
3 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

Abstract. Graphic Processing Units have received much attention in last years.
Compute-intensive algorithms operating on multidimensional arrays that have
nearest neighbor dependency and/or exploit data locality can achieve massive
speedups. This work discuss a solver for the pressure problem in applications us-
ing immersed boundary techniques in order to account for moving solid bodies.
The solver is based on standard Conjugate Gradients iterations and depends on
the availability of a fast Poisson solver on the whole domain to define a precon-
ditioner.

Keywords: Graphics Processing Units; Incompressible Navier-Stokes; Poisson
equation

1 Introduction

Graphics Processing Units (GPU) are computer co-processors used in desktop comput-
ers and workstations to off-load the renderization of complex graphics from the main
processor (CPU). They have evolved to complex systems containing many process-
ing units, a large amount of on-board memory and a computing power in the order of
teraflops. They are instances of massively parallel architectures and Single Instruction
Multiple Data (SIMD) paradigms.

Recently, GPU’s are becoming increasingly popular among scientists and engineers
for High Performance Computing (HPC) applications [1–3, 8, 9, 11–15, 19, 20]. This
tendency motivated GPU manufacturers to develop General Purpose Graphics Process-
ing Units (GPGPU) targeting the HPC market.

In the pursuit of more realistic visualization algorithms for video games and spe-
cial effects, solving Partial Differential Equations (PDE) has become a necessary in-
gredient [6, 7, 10, 18, 22]. Numerical schemes employed in these applications usually
sacrifice accuracy for speed, resulting in very fast implementations when comparing to
engineering codes.

The resolution of Computational Fluid Dynamics (CFD) problems on GPU’s re-
quires of specialized algorithms due to the particular hardware architecture of these de-
vices. Algorithms that fall in the category of Cellular Automata (CA) are the best fitted

http://www.cimec.org.ar

for GPU’s. For instance, explicit Finite Volume or Finite Element methods, jointly with
immersed boundary techniques [21] to represent solid bodies, can be used on structured
cartesian meshes. In the case of incompressible flows, it is not possible to develop a
purely explicit algorithm, due to the essentially non-local nature of the incompressibil-
ity condition.

Segregated algorithms solve an implicit Poisson equation for the pressure field, be-
ing this stage the most time-consuming in the solution procedure. Using fast Poisson
solvers like Multigrid (MG) or Fast Fourier Transform (FFT) is tempting but treating
moving solid bodies becomes cumbersome in the case of MG or unsuitable for FFT.
To surpass these difficulties, Molemaker et.al proposed in [13] the Iterated Orthogonal
Projection (IOP) method which requires a series of projections on the complete grid
(fluid and solid) to enforce the incompressibility and boundary conditions.

In this work an alternative to IOP, the Accelerated Global Preconditioning (AGP),
is proposed. The solver is based on using a Preconditioned Conjugate Gradients (PCG)
algorithm, so that, it is an accelerated iterative method in contrast to the stationary
scheme used in IOP. In addition, AGP method iterates only on pressure, whereas IOP
iterates on both pressure and velocity.

2 The Accelerated Global Preconditioning

A preconditioning for embedded problems that is based on solving the problem in the
complete mesh is presented. Suppose a situation like in figure 1, with a solid body
described by the boundary Γbdy. This is embedded in a structured FEM grid of constant
mesh size h. The Poisson problem outside the body has to be solved, so that this is done
by assembling the matrices of those finite elements that are in the fluid region. In order
to do that, the center of the elements are checked wether they fall inside or outside the
body. In this way the body is approximated by a staircase geometry as is shown in gray
in the figure. In a FEM context the imposition of the homogeneous Neumann condition
is done by simply assembling only those elements that are in the fluid part (filled in
gray in the figure). The other elements that are not in gray are ghost elements and are
not assembled for the solution of the Poisson problem. Only the pressure in the nodes
connected to some element that is assembled are relevant, i.e. those that are marked in
blue and red. Those that are marked in green are ghost and then they are not computed.
Those that are computed are classified as interior and boundary. interior to the fluid,
(subindex F) are those that are surrounded by computed elements, or conversely that
are not connected to ghost elements. The rest are marked as boundary (subindex B,
filled in red in the figure). So the Poisson problem is

Ax = b, (1)

and the splitting of nodes induces a matricial splitting like this[
AFF AFB

ABF ABB

] [
xF
xB

]
=
[
bF
bB

]
(2)

For the definition of the preconditioning P , the whole matrix P̃ for all elements
(fluid and ghost) is assembled, and the right hand side vector is extended as 0 on the

assembled elements

fluid node
boundary node

ghost node

solid body

fluid a

b

Fig. 1. Description of nodes and elements used in the AGP preconditioning.

ghost elements. The system is solved and then the ghost values are discardeed, i.e. the
preconditioning is defined formally as yFB = PxFB , where yFB is the solution of P̃FF P̃FB P̃FG

P̃BF P̃BB P̃BG

P̃GF P̃GB P̃GG

[xFB
xG

]
=
[
yFB
0G

]
. (3)

Note that a differente symbol P̃ is used for the discrete Laplace operator in this
equation, since it is assembled on differente elements. However it can be seen that

– P̃FF = AFF since the F nodes are those for which all elements are assembled in
the Poisson problem.

– P̃FB = AFB , and P̃BF = ABF since for instance, such a coefficient would link
nodes as a and b in the figure. This coefficient comes from the assembly of all the
elements that are connected to a and b, but since a is an F node, it means that all
elements connected to a are assembled.

– P̃FG = P̃GF = 0 since F nodes are only connected to fluid elements and G are
only connected to ghost elements, so that they can not share an element.

So AFF AFB 0
ABF P̃BB P̃BG

0 P̃GB P̃GG

[xFB
xG

]
=
[
yFB
0G

]
. (4)

xG can be eliminated from the bottom line, and then[
AFF AFB

ABF P̃BB − P̃BGP̃−1
GGP̃GB

]
xFB = yFB , (5)

so that an explicit expression for the preconditioning matrix is obtained

P =
[
AFF AFB

ABF P̃BB − P̃BGP̃−1
GGP̃GB

]
. (6)

A first consequence of this expression is that a lot of eigenvalues of the precondi-
tioned matrix will be 1. Consider the space of all vectors x such that the B component
is null, then

Ax = Px,

P−1Ax = x,
(7)

so that x is an eigenvector with eigenvalue 1.

2.1 Numerical experiment computing condition numbers

The condition number of matrices for the Poisson problem have been computed with
and without preconditioning.

– Nx ranges from 8 to 64.
– The Poisson problem is computed selecting the quadrangles whose center fall out-

side the body.
– In all cases the domain is the unit square with periodic boundary conditions.
– The bodies considerer are: cylinder of radius 0.2, a vertical strip of width 0.5, and

a square of side 0.5.
– Ths condition numbers are computed with Octave.

Note that in all cases the non preconditioned matrix condition number grows as
O(N2

x), whereas with the preconditioning it remains constant.

0

0.5

1

1.5

2

2.5

3

0.8 1 1.2 1.4 1.6 1.8 2

square

w/preco

cylinder

strip

fluid

solid

fluid

solid

fl
u
id

so
lid

w/o preco

w/preco
w/o preco

w/preco
w/o preco

Fig. 2. Condition number of Poisson problem with and without FFT preconditioning

0 10 20 30 40 50 60 70

w=h (no preco)

w=0.05 (no preco)

w=h, with FFT preco

w=0.05, with FFT preco

Nx

10 4

10 3

10 2

10 1

10 0

L

w

Fig. 3. Condition number for Poisson problem on a square, with and without FFT precondition-
ing.

2.2 The thin wall case

Consider now the case where the fluid occupies the interior of a square max(|x −
L/2|, |y−L/2|) < L/2−w wherew is the width of the wall (see figure 3). In the figure
the condition number for the Poisson problem with and without preconditioning are
shown. The case where the width of the wall varies so as to have always one element (in
fact two elements due to the periodic b.c.’s) separating the squares is considered. On the
other hand if a fixed value w = 0.05 then the condition number of the preconditioned
case is kept bounded.

2.3 Computation of the condition number in terms of the eigenvalues of the
Steklov operators

The eigenvalues of the Steklov operators can be computed in closed form for the case
of a cylinder in an infinite flow. Recall that the convergence of the AGP scheme is
controlled by the condition number of the preconditioned operator

cond(P−1A) =
max| eig(P−1A)|
min| eig(P−1A)|

(8)

As all are positive and definite operators, the eigenvalues λ are real and positive, and
0 ≤ λ ≤ 1. Also there are a lot of eigenvalues that are unity λ = 1, they correspond to
the space of functions that satisfy the boundary condition (∂φ/∂n) = 0 at Γ . However,
the Krylov methods iterate only on the space perpendicular to it, and it can be shown
that the condition number of the preconditioned Steklov operator must be computed

S̃ = (SF + SS)−1SF . (9)

κ(S̃) =
max[eig(S̃)]
min[eig(S̃)]

(10)

For simple geometries like a semi-infinite plane, a strip, and a cylinder the eigenvalues
of SF , SS can be explicitely computed. In addition, it turns out that the eigenfunctions
are the same, so that the spectral decomposition of the sum SF + SS and the precon-
ditioned operator are available. Recall that the Steklov SF : VΓ → VΓ , operator is
defined as w = SF (v)

∆φ = 0, in ΩF
φΓ = v, and w = (∂φ/∂n)|Γ

(11)

where VΓ = {real valued functions on Γ}, n̂ is the normal to Γ exterior to ΩF . The
same definition, mutatis mutandis, applies to SS .

The semiplane. The geometry consists on a semiplane

ΩF = {x/x < 0}, ΩS = {x/x > 0}, Γ = {x/x = 0} (12)

By symmetry of translation in the y direction the eigenfunctions must be plane waves
of the form v = eiky with k real. The solution to the Poisson problem on the fluid and
solid are

φ = eikye−|k|x, x ∈ ΩS ,
φ = eikye|k|x, x ∈ ΩF ,

(13)

and then

eig{SF (v)} = eig{SS(v)} = |k|, (14)

so that all the eigenvalues of S̃ are 0.5, and κ(S̃) = 1.

The cylinder. The domain is ΩS = {||x|| = R}. By rotational symmetry the eigen-
functions must be

vn,+ = cos(nθ)
vn,− = sin(nθ)

(15)

where r, θ are polar coordinates at the center of the cylinder. The solution at both do-
mains are

φn,±,F = r−n
{

cos(nθ)
sin(nθ)

}
, φn,±,S = rn

{
cos(nθ)
sin(nθ)

}
, (16)

so that the eigenvalues and eigenfunctions of both operators are the same

λ(n,±, F/S) =
n

R
(17)

and again λn,S̃ = 1/2, κ(S̃) = 1.

The infinite strip The domain is ΩS = {|x| ≤ w/2} where w is the width of the strip.
The space VΓ are pairs of functions on both sides of the strips. By translation invariance
in the y direction

v =

{
a eiky, for x = −w/2
b eiky, for x = +w/2

(18)

it can be shown by symmetry x→ −x that the eigenfunctions are the symmetric (a = b)
and antisymmetric (a = −b) combinations, so that

vk,± =

{
±eiky, for x = −w/2,
eiky, for x = +w/2.

(19)

The corresponding solution for the symmetric modes at ΩF,S are

φk,+ =

eiky+|k|(w/2−x), for |x| ≥ w/2,
cosh(kx)

cosh(kw/2)
eiky, for |x| ≤ w/2,

(20)

and the corresponding eigenvalues

λ(k,+, F) = |k|,
λ(k,+, S) = k tanh(kw/2).

(21)

And for the antisymmetric eigenfunctions,

φk,− =

sign(x)eiky+|k|(w/2−x), for |x| ≥ w/2,
sinh(kx)

sinh(kw/2)
eiky, for |x| ≤ w/2,

(22)

and the corresponding eigenvalues

λ(k,−, F) = |k|,
λ(k,−, S) = k coth(kw/2).

(23)

Both the symmetric and antisymmetric eigenvalues van be seen in figure 4. Note
that the eigenvalues of the fluid operator λ(k,±) are the same for the symmetric and
antisymmetric case and independent of the strip width w, since the fluid domain is
completely decoupled by the strip, and then the eigenvalues of the Steklov operator SF
are the same as those of those of each semiplane x > w/2 and x < w/2.

On the other hand, with respect to the eigenvalues of the Steklov operator of the strip
(solid domain) SS , note that both symmetric and antisymmetric eigenvalues behave like
∼ |k| for kw → ∞. This is because for kw large means that the wavelength of the
eigenfunction is much smaller than the width of the strip and then again, the behavior
of the eigenvalues is the same as for a infinite semiplane.

However, when kw is small the behavior of the symmetric and antisymmetric bran-
ches is very different. Remember that, as per definition of the Steklov operator, given an
eigenfunction u it must be imposed as a Dirichlet boundary condition on the interface

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

Fig. 4. Eigenvalues of Steklov operators for the solid strip case.

Γ , solve the Laplace equation for the field φ in the corresponding domain and compute
the flux v = (∂φ/∂n). As u is an eigenfunction, v should be proportional to u and the
proportionality constant is the eigenvalue λ. First consider the symmetric branch. If a
sinusoidal value is imposed on the left boundary x = −w/2 (see figure 6) then for the
symmetric mode the same Dirichlet boundary condition must be imposed on the other
boundary x = +w/2. As a result, facing points inside the strip like A,A′ or B,B′

have equal values of temperature φ imposed and then the heat flow is very low, which
means a small eigenvalue. On the other hand, for the antisymmetric mode, opposing
points have the same absolute temperature but of opposed sign, and the heat flow is
very high (the red arrows in the figure). This explains why for low wavenumber k the
eigenvalues of the symmetric mode are smaller, with a behavior λ ∝ k2 for k → 0. For
the antisymmetric mode for low wavenumber the eigenvalue is larger with a behavior
λw → 2 for kw → 0.

This last limit is simple to understand. Effectively, for very small wavenumber con-
duction in the y direction can be neglected, and so for an eigenfunction u = ± cos ky
at x = ±w/2 the solution is

φ =
2x
w

cos ky, (24)

so that

v = (∂φ/∂n)|x=w/2 =
2
w

cos ky =
2
w
u. (25)

So that, λw = 2.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Fig. 5. Eigenvalues of preconditioned Steklov operator for the symmetric and antisymmetric
branches.

The eigenvalues of the preconditioned Steklov operators are plot in figure 5. They
are given by the expressions

λ(k,+, S̃) =
|k|

|k|+ k tanh(kw/2)
,

λ(k,−, S̃) =
|k|

|k|+ k coth(kw/2)
.

(26)

Note that for both symmetric and antisymmetric mode the eigenvalues g to 1/2 for kw →
∞, as for an infinite semiplane. On the other hand, for small kw the eigenvalues of the
symmetric mode are larger than 1/2, and those for the antisymmetric modes are smaller.
So, if the eigenvalues for the symmetric modes are considered the condition of the
preconditioned Steklov operator is 2, whereas if we consider the antisymmetric modes
the condition number tends to∞ since the smallest eigenvalue tends to 0 for kw → 0.

This is expected, since the FFT preconditioning is based on solving the Poisson
equation on the whole domain, fluid and solid, instead in solving only on the fluid.
Thus, this preconditioning is good whenever the fluxes in the solid domain are small.
But this is exactly the case for the symmetric modes, and the opposite happens for the
antisymmetric modes.

x

y

A

A'

B

B'

x

y

A'

B

B'

symmetric mode antisymmetric mode

A

Fig. 6. Explanation of the behavior of the Steklov eigenvalues for large wavelengths.

Estimation of the condition number for thin walls The analysis of the infinite strip
shows that a situation where the FFT preconditioning is deteriorated is when there are
thin walls in the solid geometry, since in that case the modes that are antisymmetric
about the axis of the solid produce large heat fluxes in the solid, and this is an indication
of bad performance of the preconditioning. So for elongated solid geometries with, say,
a typical length of L and a typical width of w � L an estimate of the condition number
of the preconditioned operator can be obtained by taking L as the maximal wavelength
and the estimate gives a condition number of

κ(S̃) ∼ |kmin|+ kmin coth(kminw/2)
|kmin|

(27)

where kmin = 2π/L. By algebraic manipulation this can be simplified to

κ(S̃) ∼ 1 + coth(
πw

L
) ∼ L

πw
, (28)

i.e. the condition number is proportional to the aspect ratio of the solid domain.

3 CUDA implementation

A basic description of the CUDA implementation will be given here. Complete details
can be found elsewhere [4, 5].

Code (1) shows the pseudocode for the complete set of steps required under a
fractional-step method to solve checkerboard problems on pressure-velocity decoupling
under discrete schemas as finite differences or volume methods.

Algorithm 1 - Pseudocode used to explain briefly the steps requiered by our prob-
lem.

f o r i =1 : TimeSteps {
1− Update s o l i d p o s i t i o n .
2− Impose s o l i d v e l o c i t i e s on c u r r e n t v e l o c i t y f i e l d .
3− So lve momentum e q u a t i o n s .
4− Time i n t e g r a t i o n (Adams−B a s h f o r t)
5− Impose s o l i d v e l o c i t i e s on c u r r e n t v e l o c i t y f i e l d .
6− Compute v e l o c i t y d i v e r g e n c e .
7− CG+FFT s o l v e r .

7.1− F l u i d + s o l i d FFT s o l v e r .
7.2− S o l v i n g P o i s s o n e q u a t i o n f o r p r e s s u r e (←↩

c o n t r i b u t i o n s a c c o u n t e d on ly by s o l i d−f r e e nodes) .
8− Compute p r e s s u r e g r a d i e n t s (c o n t r i b u t i o n s a c c o u n t e d ←↩

on ly by s o l i d−f r e e nodes) .
9− Update s o l i d−f r e e nodes u s i n g p r e s s u r e g r a d i e n t s .

}

Some comments about the algorithm follows:

– Step 1 applies only in the case of moving bodies. If the bodies are at rest this step
is irrelevant.

– Step 2 consists in imposing the velocities of the solid to those velocity cells that fall
inside the given body.

– In step 7.2 only the contributions of cells not connected to the solid are assembled.
– In steps 8-9 pressure gradients are obtained and used to update velocity nodes

whose pressure neighbours are not in the solid.

The results obtained by the algorithm are shown on Table (1). The GPGPU used
was a NVIDIA Tesla C2050 under a CPU intel i7 950. CG iterations were limited on 3,
where an absolute error tolerance of 10−2 ∼ 10−3 was reached.

Simple [segs/MCels] Double [segs/MCels]

32x32x32 0.17 0.20
64x64x64 0.043 0.062

128x128x128 0.026 0.044
Table 1. Performance obtained per time step using NVIDIA Tesla C2050. CG iterations: 3.

The most consuming steps are those on solving momentum equations and the Pois-
son step.

In this work the NVIDIA cuFFT library [16, 17] has been used to perform FFT’s,
Thrust and CUSP API’s to manage vector and linear algebra operations, and VTK for
visualization the results obtained.

4 Numerical experiments

solid layer

Fig. 7. Colormap of log10(|ω|) for a square of side Ls = 0.4[m] moving in a square domain of
side L = 1[m]. The square moves forming a Lissajous 8-shaped curve.

Numerical simulations of several flows involving moving bodies are shown in fig-
ures 7-11. In all cases (except for the case of the example in section §4) the flows
represent a body moving inside a square or cubic cavity of length side 1[m]. In order
to circumvent the restriction of periodic boundaries intrinsic to the FFT solver, a thin
layer (2.5% of the square or cubic domain side length) is defined as a fixed body. In
all cases the color corresponds to log10(|ω|), i.e. the absolute magnitude of the vortic-
ity vector ω = ∇ × u in logarithmic scale. This quantity helps in the visualization
of boundary layers, since the magnitude of vorticity has variations of several orders of
magnitude in flows with boundary layers at high Reynolds numbers. In 2D cases the
mesh was 128 × 128 and in 3D cases 128 × 128 × 128. In all cases the side of the
domain (square in 2D, cube in 3D) was L = 1[m] and the kinematic viscosity was
ν = 6.33×10−5[m2/s].

Square moving in curved trajectory. The body is a square of side Ls = 0.4[m], and
the center of the body (xc, yc) describes an 8-shaped Lissajous curve, described by

xc =
L

2
+A cos(2ωt), yc =

L

2
+A cos(

π

2
+ ωt),

ω = 1[s−1], A = 0.2[m]
(29)

solid layer

Fig. 8. Colormap of log10(|ω|) for a rectangle sliding on the bottom of the domain.

b
lo

w
in

g
 layer

periodic

periodic

Fig. 9. Colormap of log10(|ω|) for a square body performing harmonic motion in the vertical
direction with a cross flow in the horizontal direction.

As the body displaces fluid high levels of vorticity can be observed at the vertices. As the
simulation progresses large vortices remain rotating in the fluid with long filamentary
vorticity layers that are a characteristic 2D feature (they are unstable in 3D).

Moving rectangular obstacle. The body is a rectangle of height H = 0.5[m] and
width W = 0.2[m]. An harmonic horizontal displacement as follows

xc = (L/2) +A cos(ωt),

ω = 1[s−1], A = 0.3[m],
(30)

is imposed. As the body displaces fluid a large concentration of vorticity is observed in
the upper corner of the body, with characteristic trailing filamentary vortex layers that
detach from the corners.

solid layer

Fig. 10. Colormap of log10(|ω|) for a cube moving in a Lissajous 8-shaped curve.

solid layer

Fig. 11. Colormap of log10(|ω|) for a falling block.

Square moving vertically with mean horizontal flow. In this example the exterior
boundary of the computational domain is not at rest, but rather it is intended to generate
a mean flow that impinges on the body. This freestream flow is obtained with a layer
of width 0.025[m] at the left and right sides were a positive x velocity of u = 1[m/s]
is imposed. Periodic boundary conditions are imposed in the vertical y direction. The
body is a square of side Ls = 0.4[m], the center of the body (xc, yc) is centered in the
x direction and experiences an harmonic vertical movement

yc = (L/2) +A cos(ωt),

ω = 0.5[s−1], A = 0.2[m].
(31)

An accelerating boundary layer is formed at the left side facing the fluid stream. The
boundary layer accelerate towards the corners and detach there. If the vertical move-
ment were at a constant velocity then the flow would be equivalent to a fixed body with
an impinging stream at an angle of attack. A notable feature of the flow is that when

the body reaches the extreme positions in the y direction the vortex layers become un-
stable and start shedding vortices, whereas when the body is moving the vortex layer
stabilizes.

Moving cube This is a 3D case. The center (xc, yc, zc) of a cube of side Ls = 0.4[m]
is describing a Lissajous 8-shaped figure in the z = 0.66[m] plane, as follows

xc = L/2 +A cos(ωt),

yc = L/2 +A cos(
π

2
+ 2ωt),

zc = 0.66[m],

ω = 2[s−1], A = 0.4[m]

(32)

This is similar to the case §4 but 3D. The large filamentary vortex layers are no more
present, but instead there is a large amount of small eddies characteristic of a 3D flow.

Falling block The body is a parallelepiped block of dimensions Lx = Lz = 0.6[m],
Ly = 0.2[m]. The center of the body is initially at (xc, yc, zc) = (0.4125, 0.7, 0.5)[m]
and starts falling vertically with a velocity of 1[m/s]. As the body falls it displaces a
large quantity of fluid that forms a turbulent region expanding from both sides of the
block.

5 Conclusions

A new method called Accelerated Global Preconditioning for solving the incompress-
ible Navier-Stokes equations with moving bodies was presented. The algorithm is based
on a pressure segregated, staggered grid, Finite Volume formulation and uses an FFT
solver for preconditioning the CG solution of the Poisson problem. Theoretical esti-
mates of the condition number of the preconditioned Poisson problem are given, and
several numerical examples are presented validating these estimates. The algorithm is
specially suited for implementation on GPU hardware. The condition number of the pre-
conditioned Poisson equation does not degrade with refinement. The algorithm allows
computing 3D problems in real time on moderately large meshes for many problems of
practical interest in the area of Computational Fluid Dynamics.

6 Acknowledgment

This work has received financial support from

– Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina,
PIP 5271/05),

– Universidad Nacional del Litoral (UNL, Argentina, grant CAI+D 2009-65/334),
– Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina,

grants PICT-1506/2006, PICT-1141/2007, PICT-0270/2008), and

http://www.conicet.gov.ar
http://www.unl.edu.ar
http://www.agencia.gov.ar

– European Research Council (ERC) Advanced Grant, Real Time Computational
Mechanics Techniques for Multi-Fluid Problems (REALTIME, Reference: ERC-
2009-AdG).

The authors made extensive use of Free Software as GNU/Linux OS, GCC/G++ com-
pilers, Octave, and Open Source software as VTK among many others. In addition,
many ideas from these packages have been inspiring to them.

Bibliography

[1] Adams, S., Payne, J., Boppana, R.: Finite difference time domain (FDTD) simu-
lations using graphics processors. HPCMP Users Group Conference 0, 334–338
(2007)

[2] Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: SC ’09: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. pp. 1–11.
ACM, New York, NY, USA (2009)

[3] Corrigan, A., Camelli, F.F., Löhner, R., Wallin, J.: Running unstructured grid-
based CFD solvers on modern graphics hardware. International Journal for Nu-
merical Methods in Fluids (2010), (in press)

[4] Costarelli, S.: Resolución de las ecuaciones de navier-stokes utilizando cuda.
Tech. rep., Universidad Nacional del Litoral (2011), http://www.cimec.
org.ar/ojs/index.php/cimec-repo/article/view/3735

[5] Costarelli, S., Paz, R., Dalcin, L., Storti, M.: Resolución de las ecuaciones de
navier-stokes utilizando cuda. In: Muller, O., Signorelli, J., Storti, M. (eds.)
Mecánica Computacional. vol. XXX, pp. 2979–3008. AMCA (2011), http:
//www.cimec.org.ar/ojs/index.php/mc/article/view/3965

[6] Crane, K., Llamas, I., Tariq, S.: Chapter 30 - Real-Time Simulation and Rendering
of 3D Fluids (2008)

[7] Elcott, S., Tong, Y., Kanso, E., Schröder, P., Desbrun, M.: Stable, circulation-
preserving, simplicial fluids. In: SIGGRAPH Asia ’08: ACM SIGGRAPH ASIA
2008 courses. pp. 1–11. ACM, New York, NY, USA (2008)

[8] Elsen, E., LeGresley, P., Darve, E.: Large calculation of the flow over a hypersonic
vehicle using a GPU. J. Comput. Phys. 227(24), 10148–10161 (2008)

[9] Goddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Wobker, H., Becker,
C., Turek, S.: Using GPU’s to improve multigrid solver performance on a cluster.
Int. J. Comput. Sci. Eng. 4(1), 36–55 (2008)

[10] Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient simulation of large
bodies of water by coupling two and three dimensional techniques. ACM Trans.
Graph. 25(3), 805–811 (2006)

[11] Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.: Nodal discontinuous
galerkin methods on graphics processors. Journal of Computational Physics
228(21), 7863–7882 (2009)

[12] Lastra, M., Mantas, J.M., Ure na, C., Castro, M.J., García-Rodríguez, J.A.: Sim-
ulation of shallow-water systems using graphics processing units. Math. Comput.
Simul. 80(3), 598–618 (2009)

http://erc.europa.eu
http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=518
http://erc.europa.eu/index.cfm?fuseaction=page.display&topicID=518
http://www.cimec.org.ar/ojs/index.php/cimec-repo/article/view/3735
http://www.cimec.org.ar/ojs/index.php/cimec-repo/article/view/3735
http://www.cimec.org.ar/ojs/index.php/mc/article/view/3965
http://www.cimec.org.ar/ojs/index.php/mc/article/view/3965

[13] Molemaker, J., Cohen, J.M., Patel, S., Noh, J.: Low viscosity flow simulations for
animation. In: SCA ’08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. pp. 9–18. Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland (2008)

[14] Mossaiby, F., Rossi, R., Dadvand, P., Idelsohn, S.: Opencl-based implementation
of an unstructured edge-based finite element convection-diffusion solver on graph-
ics hardware. International Journal for Numerical Methods in Engineering 89,
1635 1651 (2012)

[15] Mullen, P., Crane, K., Pavlov, D., Tong, Y., Desbrun, M.: Energy-preserving inte-
grators for fluid animation. In: SIGGRAPH ’09: ACM SIGGRAPH 2009 papers.
pp. 1–8. ACM, New York, NY, USA (2009)

[16] Nvidia, C.: Compute unified device architecture (CUDA) (2010), http://
developer.nvidia.com/category/zone/cuda-zone

[17] Nvidia, C.: CUFFT library (2010), http://developer.nvidia.com/
cufft

[18] P.Rinaldi, Bauza, C.G., Vénere, M., Clausse, A.: Paralelización de autómatas celu-
lares de aguas superficiales sobre placas gráficas. In: Cardona, A., Storti, M.,
Zuppa, C. (eds.) Mecánica Computacional Vol. XXVII. vol. XXVII, pp. 2943–
2957 (2008)

[19] Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu,
W.m.W.: Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA. In: PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming. pp.
73–82. ACM, New York, NY, USA (2008)

[20] Thibault, J.C., Senocak, I.: CUDA implementation of a Navier-Stokes solver on
multi-GPU desktop platforms for incompressible flows. In: AIAA (ed.) 47th
AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition (Disc 1) (2009)

[21] Wang, X., Wang, C., Zhang, L.: Semi-implicit formulation of the immersed finite
element method. Computational Mechanics 49, 421–430 (2012)

[22] Wu, E., Liu, Y., Liu, X.: An improved study of real-time fluid simulation on GPU:
Research articles. Comput. Animat. Virtual Worlds 15(3-4), 139–146 (2004)

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cufft
http://developer.nvidia.com/cufft

	A Numerical Algorithm for the Solution of Viscous Incompressible Flow on GPU's

