
SMCV: a Methodology for Detecting Transient Faults in
Multicore Clusters

Diego Montezanti1,3, Fernando Emmanuel Frati1,3, Dolores Rexachs2, Emilio Luque2,
Marcelo Naiouf1 and Armando De Giusti1,3

1Instituto de Investigación en Informática LIDI, Facultad de Informática, UNLP
{dmontezanti,fefrati,mnaiouf,degiusti}@lidi.info.unlp.edu.ar

2Departamento de Arquitectura de Computadores y Sistemas Operativos, UAB
{dolores.rexachs,emilio.luque}@uab.es

3Consejo Nacional de Investigaciones Científicas y Técnicas

Abstract. The challenge of improving the performance of current processors is
achieved by increasing the integration scale. This carries a growing vulnerabil-
ity to transient faults, which increase their impact on multicore clusters running
large scientific parallel applications. The requirement for enhancing the reliabil-
ity of these systems, coupled with the high cost of rerunning the application
from the beginning, create the motivation for having specific software strategies
for the target systems. This paper introduces SMCV, which is a fully distributed
technique that provides fault detection for message-passing parallel applica-
tions, by validating the contents of the messages to be sent, preventing the
transmission of errors to other processes and leveraging the intrinsic hardware
redundancy of the multicore. SMCV achieves a wide robustness against transi-
ent faults with a reduced overhead, and accomplishes a trade-off between mod-
erate detection latency and low additional workload.

Keywords: transient fault, silent data corruption, multicore cluster, parallel sci-
entific application, soft error detection, message content validation, reliability.

1 Introduction

The challenge of improving the computation performance of current processors has
been achieved by increasing integration scale, which implies that the number of tran-
sistors within chips is growing. Additionally, the increment of the operation frequency
has caused a raise in the internal operation temperature. These factors, added to a
decrease in input power, cause processors to be more vulnerable to transient faults
[14,17].

A transient fault is the consequence of interference from the environment that af-
fects some hardware component in the computer. This can be caused by electromag-
netic radiation, overheating, or input power variations, and can temporarily invert one
or several bits of the affected hardware element (single bit-flip or multiple bit-flip)
[2].

The way in which each transient fault occurs is unique; any given transient fault
does not occur exactly the same never again throughout the lifespan of the system.
These faults are short-lived and do not affect the regular operation of the system, alt-
hough they can result in the incorrect execution of an application. Physically, they can
be located anywhere in the hardware of the system; in this context, the faults that
affect processor registers and logics are critical, since other parts of the system, such
as memories, storage devices and buses, have built-in mechanisms (such as ECCs1 or
parity bits) capable of detecting and correcting this type of faults [1].

From the perspective of the program being run, the fault can alter the status of a
hardware component that contains important information for the application. Depend-
ing on the time and specific location of the fault, it can affect application behavior or
results and, therefore, system reliability [3].

The impact of transient faults becomes more significant in the context of HPC.
Even if the mean time between faults (MTBF) in a commercial processor is of the
order of one every two years, in the case of a supercomputer with hundreds or thou-
sands of processors that cooperate to solve a task, the MTBF decreases as the number
of processors increases. Since the year 2000, error reports due to large transient faults
in large computers or server groups have become more frequent [1,20]. This situation
is worse with the advent of multicore architectures, which incorporate a great degree
of parallelism at hardware level. Also, the impact of the faults becomes more signifi-
cant in the case of longer applications, given the high cost of relaunching execution
from the beginning. These factors justify the need for a set of strategies to improve
the reliability of high-performance computation systems. In this way, the first step is
detecting the faults that affect application results but are not intercepted by the operat-
ing system and, therefore, do not cause the application to be aborted.

Traditionally, the existing proposals for providing transient fault tolerance have
been divided into those that tackle the problem from a hardware standpoint, and those
that do so from an application perspective.

Hardware-based techniques [8,9,11,13] aim to protect the various elements in the
processor by adding additional logics to provide redundancy. These are most widely
used in critical environments, such as flight systems or high-availability servers,
where the consequences of a transient fault can be disastrous.

Hardware-redundancy-based techniques, however, are inefficient in general pur-
pose computers. The cost of designing and verifying redundant hardware is high, and
the environmental conditions in which the processors are used and processor ageing
are the main causes for faults that cannot be predicted during the development stage.
On the other hand, in many applications (audio or video on demand), the consequenc-
es of a fault are not as severe, so there is no critical need to add thorough fault-
tolerance mechanisms [21].

The compromise between the achieved reliability and the resources involved
makes software-redundancy-based strategies [19] to be the most appropriate for gen-
eral purpose computational systems. The basic idea for detecting faults, called DMR2,

1 ECC: Error Correcting Code
2 DMR: Dual Modular Redundancy

consists in duplicating application computation. Both replicas operate over the same
input data and compare their outputs [8,11]. These techniques are characterized by
their low cost and flexibility, allowing various configuration options to adapt to spe-
cific application needs [4].

An important aspect of detection lies in the validation interval. If results are com-
pared only at the end, the fault that affects the application is detected with little addi-
tional workload, but the cost of relaunching the application from the beginning is
high, especially in the case of large parallel applications. On the other end, if partial
results are validated frequently, a high workload is introduced but the cost of re-
executing the application from the last consistent state is lower than in the previous
case. Therefore, a compromise must be reached between the detection interval and the
additional workload introduced.

There are numerous proposals for detection, based on duplication, designed for se-
rial programs, whose purpose is ensuring execution reliability. From this standpoint, a
parallel application can be viewed as a set of sequential processes that have to be
protected from the consequences of transient faults by means of the set of adopted
techniques.

In this context, SMCV (Sent Message Content Validation) is presented, which is a
proposal specifically designed for the detection of transient faults in scientific, mes-
sage-passing parallel applications that execute on the nodes of a multicore cluster.
SMCV uses software techniques that leverage the intrinsic redundancy existing in
multicores, replicating each process of the parallel application in a core of the same
processor. The detection is performed by validating the contents of the messages to be
sent using a moderate validation interval and adding a reduced additional workload
and a low overhead with respect to execution time. SMCV is a distributed strategy
that improves the reliability of the system (formed by the cluster and the parallel ap-
plication), isolating the error produced in the context of an application process and
preventing it from propagating to the others. The end goal is to ensure that the appli-
cations that finish do so with correct results.

The rest of this paper is organized as follows: in Section 2, the theoretical context
related to transient faults and their consequences in message-passing parallel applica-
tions is reviewed. In Section 3, related work is discussed. Section 4 describes this
work´s proposal and explains the choices made. In Section 5, the methodology pro-
posed is described in detail. Section 6 discusses the initial experimental validation. In
Section 7, future lines of work are described, and Section 8 presents the conclusions.

2 Background

2.1 Soft Errors. Classification.

The errors (external manifestations of an inconsistent internal status) produced by
transient faults are called soft errors. While transient faults affect system hardware,
soft errors can be observed from the perspective of program execution.

Figure 1 shows the classification of the possible consequences of transient faults
[24].

Fig. 1. Classification of possible outcomes of a transient fault (adapted from [24])

The soft error rate (SER) of a system is given by [18]:

 ���	 � 	���	 � 	��		 � 	
� (1)

A Detected Unrecoverable Error (DUE) is a detected error that has no possibility
of recovery. DUEs are a consequence of faults that cause abnormal conditions that are
detectable on some intermediate software layer level (e.g. Operating System, commu-
nication library). Normally, they cause the abrupt stop of the application. For in-
stance, an attempt to access an illegal memory address (segmentation fault) or an
attempt to run an instruction that is not allowed (e.g. zero division).

A Silent Data Corruption (SDC) is the alteration of data during the execution of a
program that does not cause a condition that is detectable by system software. Its
effects are silently propagated through the execution and cause the final results to be
incorrect. From a hardware point of view, this is caused by the inversion of one or
several bits of a processor´s register being used by the application, causing the pro-
gram to generate faulty results.

A Latent Fault (LF) is a fault that corrupts data that are not read or used by the ap-
plication so, despite the fault effectively happening, it does not propagate through the
execution and has no impact on the results.

As a consequence, it is important that strategies are developed to intercept SDCs,
which are the most dangerous type of faults that can occur from the point of view of
reliability, because the program appears to be running correctly but, upon conclusion,
its output will be corrupted.

2.2 Transient Faults in Message Passing Parallel Applications

The occurrence of a transient fault that causes an SDC in a core that is running one
of the processes of a message-passing parallel application can have two different con-
sequences:

 ��		 � 	��		 � 	��	 (2)

A Transmitted Data Corruption (TDC) is an error in which the fault affects data that
are part of the contents of a message that has to be passed. If undetected, the corrup-
tion is propagated to other processes of the parallel application.

On the other hand, in the case of a Final Status Corruption (FSC), the fault affects
data that are not part of the contents of the message, but is propagated locally during
the execution of the affected process, corrupting its final state. In this case, the behav-
ior is similar to that of a sequential process.

Since a parallel application consists in the collaboration among multiple processes
to perform a task, its success is based on communicating the local computation results
obtained by each process to the others. Therefore, all faults that cause a TDC have a
high impact on the end results. On the other hand, the faults that cause an FSC are
related to the centralized part of the computation, and can therefore be detected by
comparing the end results. Following this line, it follows that, if the task is divided
among a larger number of processes, there will be a larger number of messages and a
consequent growth in the TDC portion.

In this context, SMCV proposes a detection scheme that is focused on those faults
that cause TDCs, and adds a final stage for comparing results to ensure system relia-
bility. The solution proposed is discussed in Sections 4 and 5.

3 Related Work

Fault Tolerance (FT) involves three phases: detection, protection and recovery. One
of the ideas most commonly used for detecting faults, proposed by Rotenberg [23], is
duplicating the execution of a process hosted in a given core, using another core that
works as redundancy. Both replicas operate on the same input data, compare their
partial results every given period of time, and only one of them writes to memory or
sends a message to another process [7,8,9,10,11].

Among the proposals that are based on software redundancy, code duplication,
with several variants, has been the idea most widely adopted in the field of transient
fault detection. SRT (Simultaneous & Redundant Threading) [5] is a first approxima-
tion to this, which consists in simultaneously running two replicas of a program as
separate threads, dynamically scheduling hardware resources between them, and
providing detection through input duplication and output comparison. In [6] CRT
(Chip-level Redundant Threading) is proposed, which is the application of this tech-
nique to CMP environments. SRTR (SRT with Recovery) [7] proposes improvements
to the detection mechanism and provides recovery through reexecution in the pipe-
line. CRTR (CRT with Recovery) [8] improves detection by separating execution
from threads to mask the communication latency between cores, and it applies the
recovery mechanisms proposed in [7] for a CMP environment. In [9], DDMR (Dy-
namic DMR) is proposed, a technique in which the cores that run the application in
redundant mode are dynamically associated to prevent defective cores from affecting
reliability, dealing with processing asymmetries and improving scalability. It intro-
duces the possibility of configuring the system to operate in redundant mode or using

the cores separately for processing. All these solutions involve some modification to
system hardware.

In [4], the Mixed Mode Multicore model is proposed, which allows running the ap-
plications that require reliability in redundant mode and, for applications that require
high performance, avoiding this penalty, thus providing flexibility through configura-
tion settings.

In [12], the proposal is obtaining a reduced version of the application by removing
inefficient computation and computation related to predictable control flow. The full
application and its reduced version are run in separate threads, providing redundancy
and advance results that speed up the execution of the application. The authors in [11]
propose selecting a core to carry out monitoring tasks over the processes that are run
in the other cores, cyclically verifying their states. As an alternative, more than one
core can be used for diagnosis operations, and the coverage level in case of faults can
be configured, as well as the maximum overhead allowed. Thus, there is no need to
produce a full replica of the program.

Among the solutions that are purely based on software, PLR [21] proposes the cre-
ation of a set of redundant processes for each application, being transparent to it. The
implementation allows the Operating System to intelligently manage available hard-
ware resources. This technique is designed for sequential programs.

In the context of these options, SMCV proposes a detection solution that is specific
to message-passing parallel applications, not requiring any hardware modifications
and leveraging the redundant resources that already exist in the multicore environ-
ment.

4 Work Hypothesis. Proposed Solution

In this section we present the rationale for SMCV. First, the usefulness of validating
message contents is explained, and the features provided by the methodology are
mentioned. Then, the leverage of redundant hardware resources by SMCV to increase
system reliability is described.

4.1 Validating Contents of Sent Messages

The detection methodology proposed in this paper is essentially based on the hypoth-
esis that, in a system formed by a multicore cluster that is running a message-passing
parallel application, most of the significant computation (understood as that which
impacts application results) will be part of the content of a message that is sent to
other application process at some point during execution. Faults can corrupt data,
flags, addresses or instruction code. However, if the corrupted value is significant for
the results of the application, this situation will eventually be reflected on message
incorrectness. Thus, of the total faults that can cause SDC, most will belong to the
TDC category. Therefore, to detect faults that corrupt important data, the contents of
the messages should be monitored. As regards the sequential phase, during which
there are no communications, the end results are verified to ensure reliability.

SMCV is a detection strategy based on validating the contents of the messages to
be sent. Each application process is duplicated, and both replicas compare all the
fields that form message contents before sending; the message is sent only if the com-
parison is successful.

This technique allows detecting all faults that cause TDCs; from the point of view
of the parallel application, SMCV ensures that any fault that affects the state of a
process is not propagated to other process of the application, which confines the ef-
fects of the fault to the local process. Faced with an error, SMCV currently notifies
the application and produces a safe stop. If a final comparison of the results is added
to detect faults in the serial portion, SMCV ensures system reliability and, therefore,
that the results of any application that finishes execution are correct.

Message contents are validated before sending the message. Thus, only one of the
replicas effectively sends the message, which means that no additional network
bandwidth is consumed. Taking into account that current networks have protocols that
ensure reliable communications, there is no need to verify the contents of the messag-
es upon reception (which would involve the transmission of two messages).

SMCV provides the following features:

• Each process and its replica are locally validated. The strategy is distributed in
each application process. It is decentralized.

• It prevents the propagation of errors among application processes. Also, it detects
errors in the serial part of the application by checking the end results.

• It introduces a low overhead in execution time, since only one comparison is added
for each byte of each outgoing communication and the end result (it should be not-
ed that the cost of comparison is lower than that of communication).

• A conservative detection strategy, designed for sequential programs, consists in
duplicating application computation; to protect program outputs, each memory
write operation is checked before being written [8]. Compared with this type of al-
ternatives, SMCV involves a reduced work overload. In this sense, it can be said
that it is a lightweight technique.

• When a fault is detected, the application is stopped, allowing relaunching the exe-
cution. There is no need to wait for the incorrect stop to re-execute, so SMCV nar-
rows error latency. This carries a gain in reliability, but also in time, which be-
comes particularly significant in scientific applications that can run for several
days.

• SMCV increases system reliability, understood as the number of times the applica-
tion ends correctly, because it is able to detect faults that cause TDC.

• It achieves a trade-off between detection latency, additional workload and involved
resources. SMCV allows latency in detection, since no verification is carried out
when the corrupt value is first used. This postpones detection until the time when
the altered data are part of the contents of the message. However, this implies a
lower additional workload than validating each write operation (which produces
low latency with high workload), and better leverages the resources than an only
final comparison (which involves duplicating all computation to detect only at the

end, producing high latency with low workload). The less frequent communication
between processes, the higher latency and the lower workload.

4.2 Leveraging Redundant Hardware Resources

Hardware manufacturer’s trend is to add more cores to processors. However, many
applications do not take advantage of all computation resources efficiently. On the
other hand, the increase in the amount of transient faults goes hand in hand with the
rise in the number of processing cores. As a consequence, the focus is no longer only
processor performance, but factors such as reliability and availability have become
more relevant. Therefore, the use of cores to carry out tasks related to fault tolerance
has advantages both as regards to leveraging these resources as well as adding a bene-
ficial feature for the system.

In this context, SMCV takes advantage of the intrinsic redundancy existing in mul-
ticores, using CMP cores to locate the replicas of the processes that perform useful
computation for the application. The output to main memory is the critical aspect for
selecting the cores that will be used to detect the faults that occur in the others. SMCV
tries to exploit the memory hierarchy of the CMP, so that the redundancy of the com-
putation that is executed in any given core is placed in another core with which some
level of cache is shared. Thus, many comparisons will be resolved at LLC3, minimiz-
ing main memory access.

5 Proposed Methodology Description

As already explained, SMCV is a software-centric strategy that can detect transient
faults in a multicore cluster on which a message-passing scientific parallel application
is being run. Upon detection of a fault, a user report is issued and the application is
aborted, thus increasing system reliability.

Figure 2 shows an outline of the proposed detection methodology. Each process in
the parallel application is run in a core of the CMP, and the computation it carries out
is internally duplicated in a thread, which in turn is executed in a core that shares
some cache level with the core running the original process. Thus, there is no need to
access the main memory, taking benefit from the hierarchy to solve comparisons.

Each process is run concurrently with its replica, which means that a synchroniza-
tion mechanism is required. When a communication is to be performed (point-to-
point or collective), it temporarily stops execution and waits for its replica to reach the
same point. Once there, all fields from the message to be sent are compared, byte to
byte, to validate that the contents calculated by both replicas are the same. Only if this
proves true, one of the replicas sends the message, ensuring that no corrupt data are
propagated to other processes.

3 LLC: Last Level Cache

Fig. 2. SMCV methodology. (a) Proposed detection outline. (b) Behavior in presence of faults.

The recipient(s) of the messages stop upon reception and remain on hold. Once re-
ceived, it copies the contents of the message to its replica (also using memory hierar-
chy) and both replicas continue with their computation. Assuming that network errors
are detected and corrected at the network layer, the validated message reaches its
destination uncorrupted. By comparing the message before sending it, the message
can be sent only once. Were it be compared on reception, two copies of the message
would have to be sent through the network, which would be detrimental to bandwidth
use and network fault vulnerability.

Finally, when application execution finishes, the obtained results are checked once
to detect faults that may have occurred after communications ended, during the serial
part of the application.

5.1 Characterizing SMCV’s Additional Workload

Additional workload is related to computing amount added by the fault detection
strategy. This metric is useful to compare this methodology with other options. To
have an approach, a conservative strategy based on the validation of memory write
operations, similar to those used in sequential applications, has been analyzed. In this
case, parallel application processes are also duplicated in threads as described, but the
results of all write operations are validated (as opposed to validating only the contents
of the messages sent). This strategy can detect all faults, but with a significant in-
crease in computation amount.

The work overload WWV introduced by the write validation technique is given by:

�� 	� 	 �� � 	�. ��	. �	���� �		����� (3)

In Equation (3), S represents the number of write operations performed by the ap-
plication, excluding those corresponding to the messages it sends. It is assumed that
the application sends M messages of k elements (average) each. Csync and Ccomp repre-
sent the costs of a synchronization operation and a comparison operation, respective-
ly. The first factor in Equation (3) is therefore the total number of write operations
performed by the application. If all write operations are validated, each will involve a
synchronization operation and a comparison operation.

(a) (b)

On the other hand, the workload added by message validation, WMV is given by:

�� � �	. (���� 	+ �	. 	����)	 (4)	

In the case of message validation, for each message there is an only synchroniza-
tion operation and k comparisons (one for each element in the message).

The relation between the workload introduced by SMCV and a strategy that vali-
dates all write operations will then be given by:

��

�!
=

�	.		"#$%&	'	�	.		(.		"&)*+
,	.		�"#$%&	'	"&)*+�	'	�	.		(.	"#$%&	'	�	.		(.		"&)*+	

 (5)

The quotient of Equation (5) is always a number lower than 1, which means that
the additional computation overload for validating messages is lower than that for
validating all write operations.

The analysis was carried out for one of the processes that communicate all its re-
sults. In the case of a process that performs serial computing, the overload for com-
paring the end results is added, but this is the same in both techniques. Therefore, this
analysis is sufficiently general and representative of various situations.

It can be concluded that SMCV is a lightweight strategy that adds a reduced work-
load versus more conservative strategies that will detect faults that have no impact on
the results of the application.

6 Initial Experimental Validation

The SMCV methodology has been assessed to determine its detection efficacy and the
overhead introduced regarding to execution time. The results obtained are shown in
this section.

6.1 Testing SMCV’s Effectiveness

Tests were run with the detection tool to test its efficacy. The application used for the
tests was a parallel matrix multiplication (C = A * B), programmed following the
Master/Worker paradigm with 4 processes (the Master and 3 Workers), with the Mas-
ter also taking part of the computation of the C matrix [22]. The Master process di-
vides matrix A among all Workers and sends each one the chunk assigned to it, keep-
ing a chunk for itself to participate in the calculation of the resulting matrix. Then, the
Master sends each Worker a copy of the entire matrix B. After this, all processes
compute their corresponding chunk of matrix C and, in the final stage, send the Mas-
ter the part that they have calculated. The Master builds matrix C from what the
Workers sent and its own computation. All messages used are non-blocking. The
communications library used is OpenMPI.

All the experiments were run on a cluster with 16 blades, each one having 2 Quad
Core Intel Xeon 5405 2GHz processors, 12 MB of L2 cache and 2 GB of main

memory. For this first test, an only blade was used, with the 4 processes and their
replicas mapped to the 8 cores of the blade.

To implement SMCV, a part of an MPI communication primitive’s library was de-
veloped, with the added functionality of fault detection by comparison upon sending,
message contents duplication upon reception, and concurrency control between repli-
cas. The Pthreads library was used for creating the replicas, and replica synchroniza-
tion was done with semaphores.

The SMCV strategy was applied to the described application, replicating each of
its processes in a thread as explained in Section 5 (for this, the source code of the
application is required). The experiment consisted in injecting faults at various points
of the application by means of a debugging tool. To do this, a breakpoint is inserted at
a certain point of the execution of one of the application processes; the value of a
variable is modified, and computation is resumed, so that the consequence of the fault
at the end of the execution can be analyzed (this technique simulates a real fault in a
processor register, since for data corruption to become apparent, it must be observable
as a difference between the memory states of the replicas).

Even though a transient fault can randomly occur at any point during execution,
significant processing time points were selected for the simulated injection, both for
the Master and the Workers.

The strategy was capable of detecting all faults that affected message contents
(TDC), as expected, notifying and aborting the application so that the corruption was
not able to propagate. Thus, all Workers processing is protected. On the other hand,
the faults that occurred in the data kept by the Master for local computation, and those
that were produced after the partial results from all Workers had been collected by the
Master in the last stage (corresponding to the FSC portion) were detected while com-
paring the end results.

6.2 Overhead Measurements

The overhead is a metric of the incidence of the detection tool on system perfor-
mance, in the absence of faults. The overhead can be determined as the extra execu-
tion time implied by adding the SMCV strategy to the original application, on the
architecture described above. The time added by SMCV is a consequence of the du-
plication of each process, the synchronization between replicas, the comparison car-
ried out before each message is sent, the duplication of the messages received, and the
final verification of the results.

Experiments were carried out by applying the SMCV methodology to the matrix
multiplication application with 2, 4 and 8 processes (including the Master), with
square matrix sizes of 512, 1024, 2048, 4096 and 8192 elements. The mapping be-
tween processes and processors was made in a way that ensures the same conditions
of execution with and without the SMCV strategy, in order to directly compare the
execution times. Up to 4 processes, an only blade was used, running application pro-
cesses and its replicas using the all 8 cores. In the case of 8 processes, two blades
were used, each of them running 4 processes of the application (without SMCV) and
4 processes and its replicas (8 cores) with SMCV.

Each experiment was run five times, and the results were averaged to improve sta-
bility. The standardized results, with respect to the execution time of the application
with no fault detection, are shown in Table 1 and Figure 3.

Tam (N) 2 4 8

512 0,87% 14,24% 55,11%

1024 0,01% 1,63% 21,40%

2048 0,39% 1,61% 10,05%

4096 -0,14% 0,91% 4,74%

8192 0,17% 0,92% 2,45%

Procesos

Table 1. Overhead measurements

Fig. 3. SMCV’s overhead in execution time

As it can be observed, the overhead decreases as the size of the problem grows up.
This is because, with larger matrixes, the application spends more time computing.
However, for any given number of processes, the number of messages remains con-
stant. Therefore, synchronization, comparison and message contents duplication times
are overshadowed by processing time. On the other hand, small matrixes require a
short computation time and therefore all communication-related detection activities
become more relevant.

Similarly, it can be seen that, for any given matrix size, overhead increases with
the number of processes. This is explained by the fact that the number of messages
(and therefore, synchronizations, verifications and copies) increases with the number
of processes.

The case of 2 processes was the one that presented a wider dispersion between dif-
ferent repetitions of the experiment. A factor of randomness is present; inclusive, in
the case of N = 4096, the incorporation of SMCV appears to perform better than the
original application. However, with the precision of the obtained measurements, dif-
ferences below 1 %, which occur in all cases, are considered negligible.

Based on the experiments carried out, it can be concluded that, when the size of the
problem increases but the number of processes remains constant, the overhead is sig-

nificantly low. This would mean that, in real applications with high performance re-
quirements, handling large amounts of data, similar overheads can be obtained.

7 Future Work

This work is part of a more extensive proposal whose purpose is providing transi-
ent fault tolerance for systems formed by scientific, message-passing parallel applica-
tions that are run on multicore cluster architectures.

Fault tolerance includes the phases of detection, protection, and recovery. In the
context of permanent faults, the existing techniques most widely used are checkpoint-
ing and event log for protection, and rollback-recovery [24]. The proposal consists in
integrating the transient fault detection methodology to the protection and recovery
strategies available for permanent faults to provide transient fault tolerance. This
means that there is no need of using triple modular redundancy (TMR) [16] with vot-
ing mechanisms to detect and recover from a transient fault. Also, since transient
faults do not require system reconfiguration, recovery can be achieved by re-
executing the same core of the failed process.

In the road towards achieving this goal, the following lines are open:

1. Perfecting the detection strategy:

─ Expanding the experimental validation. A test that is more thorough than the one
carried out so far requires the use of the methodology with standard applications.
In the next stage, NAS benchmarks will be used, which are widely used in the sci-
entific environment to measure the performance of parallel machines because they
are representative of the type of computation most frequently made. These bench-
marks respond to other parallel programming paradigms, and also have the ad-
vantage of providing self-verification functions of the results, which is useful for
validating the detection strategy. In this sense, the integration with fault injection
tools is desirable, to improve validation capabilities by means of extensive random
fault injection campaigns. The overhead obtained with these applications will be
measured.

─ Achieving transparency for the application. At the current development level,
SMCV's duplication process, based on threads, requires minor changes in the ap-
plication code (and recompiling) to support the location of the replica in shared-
memory with the original process and the use of the communications library with
extended functionality. To obtain this transparency, replication must be imple-
mented at the level of processes rather than threads.

─ Optimizing the methodology to improve the trade-off between reliability, over-
head, additional workload, detection latency (related to the recovery cost) and re-
source utilization. A detailed characterization will allow suggesting new ways of
improving performance, considering the possibility of configuring the robustness
level based on application coverage needs or maximum overhead permitted
[6,11,13].

2. Providing full tolerance to SDC, restoring the system to its state previous to the
fault:

In a following stage, the distributed detection strategy (already optimized) will be
integrated with fault tolerance architectures oriented to permanent faults. The goal is
obtaining a system capable of tolerating both permanent and transient faults. In this
sense, integration with RADIC [15] will be attempted; RADIC is a transparent, scala-
ble, flexible, and fully distributed architecture that provides fault tolerance through
non-reliable elements and can recover after a permanent fault in a node. The aim is to
leverage the methodology provided by RADIC for permanent faults (the rollback
recovery mechanism, with non-coordinated checkpoints and message logs), and add
transient fault tolerance. The resulting system will have to be tested to determine the
reliability obtained, transparency for the application, resource utilization, overhead in
absence of faults, and degradation in presence of faults.

8 Conclusions

In this paper, SMCV is presented, which is a transient fault detection methodology,
purely implemented through software and specifically designed for scientific, mes-
sage-passing parallel applications that are run on multicore clusters. Under the prem-
ise that in this type of applications, all information that is relevant for the end results
is transmitted among the processes that are part of it, the SMCV strategy is based on
validating the contents of the messages to be sent and comparing the end results to
achieve a compromise between a high level of robustness against faults and the intro-
duction of a low execution time overhead, consequence of the non-detection of the
faults that would normally not affect the results. Also, it introduces a reduced addi-
tional workload versus the more conservative strategies that validate all write-to-
memory operations, similar to the ones used in sequential applications.

References

1. Mukherjee, S. S., Emer, J., Reinhardt, S. K.: The Soft Error Problem: An Architectural
Perspective. HPCA '05: Proceedings of the 11th International Symposium on High-
Performance Computer Architecture, 243 – 247 (2005)

2. Wang, N. J., Quek, J., Rafacz, T. M., Patel, S. J.: Characterizing the Effects of Transient
Faults on a High-Performance Processor Pipeline. DSN '04: Proceedings of the 2004 In-
ternational Conference on Dependable Systems and Networks, 61 – 70 (2004)

3. Mukherjee, S. S.: Architecture Design for Soft Errors. Morgan Kaufmann (2008)
4. Lesiak, A., Gawkowski, P., Sosnowski, J.: Error Recovery Problems. Dependability of

Computer Systems, 2007. DepCoS-RELCOMEX '07. 2nd International Conference on,
270 – 277 (2007)

5. Shivakumar, P., Kistler, M., Keckler, S. W., Burger, D., Alvisi, L.: Modeling the Effect of
Technology Trends on the Soft Error Rate of Combinational Logic. DSN '02: Proceedings
of the 2002 International Conference on Dependable Systems and Networks, 389 – 398
(2002)

6. Wells, P. M., Chacraborty K. Sohi G. S.: Mixed-Mode Multicore Reliability. ASPLOS
2009. SESSION: Reliable systems II, 169 – 180 (2009)

7. Reinhardt, S. K., Mukherjee S. S.: Transient Fault Detection via Simultaneous Multi-
threading. Proceedings of the 27th annual International Symposium on Computer Archi-
tecture, Vancouver, British Columbia, Canada, 25 – 36 (2000)

8. Kontz M., Reinhardt S. K., Mukherjee S. S.: Detailed Design and Evaluation of Redun-
dant Multithreading Alternatives. Proceedings of the 29th Annual International Symposi-
um on Computer Architecture (ISCA'02). Anchorage, Alaska, 99 – 110 (2002)

9. Vijaykumar T. N., Pomeranz, I. Cheng, K.: Transient-Fault Recovery using Simultaneous
Multithreading. Proceedings of the 29th Annual International Symposium on Computer
Architecture, Anchorage, Alaska. Session 3: Safety and Reliability, 87 – 98 (2002)

10. Gomaa M., Scarbrough C., Vijaykumar T. N., Pomeranz, I.: Transient-Fault Recovery for
chip Multiprocessors. Proceedings of the 30th Annual International Symposium on Com-
puter Architecture (ISCA ´03), San Diego, California, 98 – 109 (2003)

11. Golander A., Weiss S., Ronen R.: Synchronizing Redundant Cores in a Dynamic DMR
Multicore Architecture. IEEE Transactions on Circuits and Systems II: Express Briefs
Volume 56, Issue 6, 474 – 478 (2009)

12. Sundaramoorthy K., Purser Z., Rotenberg E.: Slipstream Processor: Improving both Per-
formance and Fault-tolerance. ACM SIGPLAN Notices Volume 35, Issue 11, 257 – 268
(2000)

13. Barr A. H., Pomaranski K. G., Shidla D. J.: United States Patent Application Publication
US 2005/0102565 A1: Fault Tolerant Multicore Microprocessing (2005)

14. Gramacho, J., Rexachs del Rosario, D., Luque, E.: A Methodology to Calculate a Pro-
gram´s Robustness against Transient Faults. PDPTA 2011, 645 – 651 (2011)

15. Santos, G., Duarte, A., Rexachs del Rosario, D., Luque, E.: Providing Non-stop Service
for Message-Passing Based Parallel Applications with RADIC. Euro-Par 2008, 58 – 67
(2008)

16. Mathur, F., Avizienis, A.: Reliability analysis and architecture of a hybrid-redundant digi-
tal system: generalized triple modular redundancy with self-repair. AFIPS '70 (Spring)
Proceedings of the May 5-7, 1970, Spring Joint Computer Conference (1970)

17. Mukherjee, S.; Weaver, C.; Emer, J.; Reinhardt, S., Austin, T.: A systematic methodology
to compute the architectural vulnerability factors for a high-performance microprocessor.
MICRO-36.Proceedings. 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, 29 – 40 (2003)

18. Weaver, C., Emer, J., Mukherjee, S. S., Reinhardt, S. K.: Techniques to Reduce the Soft
Error Rate of a High-Performance Microprocessor, ACM SIGARCH Computer Architec-
ture News, Volume 32, Issue 2, page 264 (2004)

19. Reis, G. A., Chang, J., Vachharajani, N., Rangan, R., August, D. I.: SWIFT: Software Im-
plemented Fault Tolerance, in Proceedings of the international symposium on Code gen-
eration and optimization, Washington DC, USA, 243–254 2005

20. Bronevetsky, G., Supinski, B.: Soft error vulnerability of iterative linear algebra methods.
ICS ’08: Proceedings of the 22nd annual international conference on Supercomputing.
New York, NY, USA: ACM, 155 – 164 (2008)

21. Shye, A., Blomstedt, J., Moseley, T., Reddi, V. J., Connors, D. A.: PLR: A software ap-
proach to transient fault tolerance for multicore architectures, Dependable and Secure
Computing, IEEE Transactions on, Volume 6, Issue 2, 135 – 148 (2009)

22. Leibovich F., Gallo S., De Giusti L., Chichizola F., Naiouf M., De Giusti A.: Compara-
ción de paradigmas de programación paralela en cluster de multicores: Pasaje de mensajes

e híbrido. Un caso de estudio. Proceedings of XVII Congreso Argentino de Ciencias de la
Computación (CACIC 2011), 241 – 250 (2011)

23. Rotenberg E.: AR-SMT: A Microarchitectural Approach to Fault Tolerance in Micropro-
cessors. Proceedings of the 29th Annual International Symposium on Fault- Tolerant
Computing, 84 – 91 (1999)

24. Rexachs, D., Luque, E.: High Availiability for Parallel Computers. JCS&T Vol. 10 No. 3,
110 – 116 (2010).

