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Abstract. The challenge of improving the performance of entiprocessors is
achieved by increasing the integration scale. Thisies a growing vulnerabil-
ity to transient faults, which increase their impa multicore clusters running
large scientific parallel applications. The reqmiemnt for enhancing the reliabil-
ity of these systems, coupled with the high costesfinning the application
from the beginning, create the motivation for havapecific software strategies
for the target systems. This paper introduces SM&hich is a fully distributed
technique that provides fault detection for mesgesagsing parallel applica-
tions, by validating the contents of the messagebe sent, preventing the
transmission of errors to other processes anddgimg the intrinsic hardware
redundancy of the multicore. SMCV achieves a widmistness against transi-
ent faults with a reduced overhead, and accomgishieade-off between mod-
erate detection latency and low additional workload
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1 Introduction

The challenge of improving the computation perfanoeof current processors has
been achieved by increasing integration scale, lwimplies that the number of tran-
sistors within chips is growing. Additionally, tirecrement of the operation frequency
has caused a raise in the internal operation teahger These factors, added to a
decrease in input power, cause processors to be wudnerable to transient faults
[14,17].

A transient fault is the consequence of interfeeeflom the environment that af-
fects some hardware component in the computer. ddrisbe caused by electromag-
netic radiation, overheating, or input power vaoias, and can temporarily invert one
or several bits of the affected hardware elemengig bit-flip or multiple bit-flip)

[2].



The way in which each transient fault occurs isquei any given transient fault
does not occur exactly the same never again thouighe lifespan of the system.
These faults are short-lived and do not affectréfgpilar operation of the system, alt-
hough they can result in the incorrect executioarofpplication. Physically, they can
be located anywhere in the hardware of the systerthis context, the faults that
affect processor registers and logics are critigialce other parts of the system, such
as memories, storage devices and buses, haverbaikechanisms (such as EC@s
parity bits) capable of detecting and correcting tipe of faults [1].

From the perspective of the program being run,féult can alter the status of a
hardware component that contains important infoionafor the application. Depend-
ing on the time and specific location of the faiilgan affect application behavior or
results and, therefore, system reliability [3].

The impact of transient faults becomes more sigaifi in the context of HPC.
Even if the mean time between faults (MTBF) in anatercial processor is of the
order of one every two years, in the case of arsgpeputer with hundreds or thou-
sands of processors that cooperate to solve atteskITBF decreases as the number
of processors increases. Since the year 2000, reports due to large transient faults
in large computers or server groups have become fmequent [1,20]. This situation
is worse with the advent of multicore architectunghich incorporate a great degree
of parallelism at hardware level. Also, the impatthe faults becomes more signifi-
cant in the case of longer applications, giventilgh cost of relaunching execution
from the beginning. These factors justify the némda set of strategies to improve
the reliability of high-performance computation t&yss. In this way, the first step is
detecting the faults that affect application resbltit are not intercepted by the operat-
ing system and, therefore, do not cause the apiplict be aborted.

Traditionally, the existing proposals for providitiansient fault tolerance have
been divided into those that tackle the problermfeohardware standpoint, and those
that do so from an application perspective.

Hardware-based techniques [8,9,11,13] aim to ptdtex various elements in the
processor by adding additional logics to providéurelancy. These are most widely
used in critical environments, such as flight syseor high-availability servers,
where the consequences of a transient fault calisbstrous.

Hardware-redundancy-based techniques, howeverinafficient in general pur-
pose computers. The cost of designing and verifygtlyndant hardware is high, and
the environmental conditions in which the processae used and processor ageing
are the main causes for faults that cannot be getiduring the development stage.
On the other hand, in many applications (audioide@ on demand), the consequenc-
es of a fault are not as severe, so there is niwatrneed to add thorough fault-
tolerance mechanisms [21].

The compromise between the achieved reliability #imel resources involved
makes software-redundancy-based strategies [19¢ tine most appropriate for gen-
eral purpose computational systems. The basicfatedetecting faults, called DMR

1 ECC: Error Correcting Code
2 DMR: Dual Modular Redundancy



consists in duplicating application computationttBeeplicas operate over the same
input data and compare their outputs [8,11]. Thes@niques are characterized by
their low cost and flexibility, allowing various nfiguration options to adapt to spe-
cific application needs [4].

An important aspect of detection lies in the vaima interval. If results are com-
pared only at the end, the fault that affects {hglieation is detected with little addi-
tional workload, but the cost of relaunching theplagation from the beginning is
high, especially in the case of large parallel magpibns. On the other end, if partial
results are validated frequently, a high workloadirtroduced but the cost of re-
executing the application from the last consistate is lower than in the previous
case. Therefore, a compromise must be reached éetive detection interval and the
additional workload introduced.

There are numerous proposals for detection, basetliplication, designed for se-
rial programs, whose purpose is ensuring execugbability. From this standpoint, a
parallel application can be viewed as a set of eetigl processes that have to be
protected from the consequences of transient faayltsneans of the set of adopted
techniques.

In this context, SMCV (Sent Message Content Vaidigtis presented, which is a
proposal specifically designed for the detectiortrahsient faults in scientific, mes-
sage-passing parallel applications that execut¢henmodes of a multicore cluster.
SMCYV uses software techniques that leverage thénsit redundancy existing in
multicores, replicating each process of the pdraldplication in a core of the same
processor. The detection is performed by validatiregcontents of the messages to be
sent using a moderate validation interval and agldirreduced additional workload
and a low overhead with respect to execution ti8CV is a distributed strategy
that improves the reliability of the system (formegthe cluster and the parallel ap-
plication), isolating the error produced in the ot of an application process and
preventing it from propagating to the others. Thd goal is to ensure that the appli-
cations that finish do so with correct results.

The rest of this paper is organized as followsSéttion 2, the theoretical context
related to transient faults and their consequeitcesessage-passing parallel applica-
tions is reviewed. In Section 3, related work iscdissed. Section 4 describes this
work’s proposal and explains the choices made ekti@ 5, the methodology pro-
posed is described in detail. Section 6 discussenitial experimental validation. In
Section 7, future lines of work are described, &adtion 8 presents the conclusions.

2 Background

2.1  Soft Errors. Classification.

The errors (external manifestations of an incoaaisinternal status) produced by
transient faults are called soft errors. While $iant faults affect system hardware,
soft errors can be observed from the perspectiygagfram execution.

Figure 1 shows the classification of the possilWasequences of transient faults
[24].
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Fig. 1. Classification of possible outcomes of a transiealt (adapted from [24])

The soft error rate (SER) of a system is given18j:[

SER = DUE + SDC + LF 1)

A Detected Unrecoverable Error (DUE) is a deteamdr that has no possibility
of recovery. DUEs are a consequence of faultsahase abnormal conditions that are
detectable on some intermediate software layet [evg. Operating System, commu-
nication library). Normally, they cause the abrigdp of the application. For in-
stance, an attempt to access an illegal memoryeaddisegmentation fault) or an
attempt to run an instruction that is not allowedy( zero division).

A Silent Data Corruption (SDC) is the alterationdatta during the execution of a
program that does not cause a condition that iscthdble by system software. Its
effects are silently propagated through the exenutind cause the final results to be
incorrect. From a hardware point of view, this @&used by the inversion of one or
several bits of a processor’s register being ugethd application, causing the pro-
gram to generate faulty results.

A Latent Fault (LF) is a fault that corrupts ddtattare not read or used by the ap-
plication so, despite the fault effectively happeniit does not propagate through the
execution and has no impact on the results.

As a consequence, it is important that strategiedaveloped to intercept SDCs,
which are the most dangerous type of faults thataur from the point of view of
reliability, because the program appears to beingncorrectly but, upon conclusion,
its output will be corrupted.

2.2 Transient Faults in Message Passing Parallel Applations

The occurrence of a transient fault that causeS@ in a core that is running one
of the processes of a message-passing parallétapph can have two different con-
sequences:



SDC = TDC + FSC )

A Transmitted Data Corruption (TDC) is an erromwihich the fault affects data that
are part of the contents of a message that has passed. If undetected, the corrup-
tion is propagated to other processes of the ghagbplication.

On the other hand, in the case of a Final Statusuption (FSC), the fault affects
data that are not part of the contents of the ngesdaut is propagated locally during
the execution of the affected process, corruptisdinal state. In this case, the behav-
ior is similar to that of a sequential process.

Since a parallel application consists in the caltation among multiple processes
to perform a task, its success is based on commtimicthe local computation results
obtained by each process to the others. Thereddirfaults that cause a TDC have a
high impact on the end results. On the other h#ral faults that cause an FSC are
related to the centralized part of the computatanmg can therefore be detected by
comparing the end results. Following this linefolfows that, if the task is divided
among a larger number of processes, there will laeger number of messages and a
consequent growth in the TDC portion.

In this context, SMCV proposes a detection schdraeis focused on those faults
that cause TDCs, and adds a final stage for comgpaeisults to ensure system relia-
bility. The solution proposed is discussed in Setdi4 and 5.

3 Related Work

Fault Tolerance (FT) involves three phases: detecirotection and recovery. One
of the ideas most commonly used for detecting $ayltoposed by Rotenberg [23], is
duplicating the execution of a process hosted givan core, using another core that
works as redundancy. Both replicas operate on @neesinput data, compare their
partial results every given period of time, andyomhe of them writes to memory or
sends a message to another process [7,8,9,10,11].

Among the proposals that are based on softwarendshey, code duplication,
with several variants, has been the idea most widdbpted in the field of transient
fault detection. SRTYmultaneous & Redundant Threading) [5] is a first approxima-
tion to this, which consists in simultaneously rimgntwo replicas of a program as
separate threads, dynamically scheduling hardweseurces between them, and
providing detection through input duplication andtput comparison. In [6] CRT
(Chip-level Redundant Threading) is proposed, which is the application of thishtec
nigue to CMP environments. SRTR (SRilth Recovery) [7] proposes improvements
to the detection mechanism and provides recoveryutfh reexecution in the pipe-
line. CRTR (CRTwith Recovery) [8] improves detection by separating execution
from threads to mask the communication latency betwcores, and it applies the
recovery mechanisms proposed in [7] for a CMP emvirent. In [9], DDMR Dy-
namic DMR) is proposed, a technique in which the coheg tun the application in
redundant mode are dynamically associated to ptelefactive cores from affecting
reliability, dealing with processing asymmetriesddmproving scalability. It intro-
duces the possibility of configuring the systenoperate in redundant mode or using



the cores separately for processing. All thesetiswis involve some modification to
system hardware.

In [4], the Mixed Mode Multicore model is proposed, which allows running the ap-
plications that require reliability in redundant deoand, for applications that require
high performance, avoiding this penalty, thus pdong flexibility through configura-
tion settings.

In [12], the proposal is obtaining a reduced vergibthe application by removing
inefficient computation and computation relatecptedictable control flow. The full
application and its reduced version are run in gpahreads, providing redundancy
and advance results that speed up the executittve @pplication. The authors in [11]
propose selecting a core to carry out monitorirsigaover the processes that are run
in the other cores, cyclically verifying their stat As an alternative, more than one
core can be used for diagnosis operations, andawerage level in case of faults can
be configured, as well as the maximum overheadvaltb Thus, there is no need to
produce a full replica of the program.

Among the solutions that are purely based on soéwRLR [21] proposes the cre-
ation of a set of redundant processes for eachcapiph, being transparent to it. The
implementation allows the Operating System to liggehtly manage available hard-
ware resources. This technique is designed foresgigl programs.

In the context of these options, SMCV proposestadtien solution that is specific
to message-passing parallel applications, not reguany hardware modifications
and leveraging the redundant resources that alreaidy in the multicore environ-
ment.

4  Work Hypothesis. Proposed Solution

In this section we present the rationale for SMEVWst, the usefulness of validating
message contents is explained, and the featureddptb by the methodology are
mentioned. Then, the leverage of redundant hardvesseurces by SMCV to increase
system reliability is described.

4.1 Validating Contents of Sent Messages

The detection methodology proposed in this papessentially based on the hypoth-
esis that, in a system formed by a multicore chutat is running a message-passing
parallel application, most of the significant cortgtion (understood as that which

impacts application results) will be part of thentamt of a message that is sent to
other application process at some point during ebi@e. Faults can corrupt data,

flags, addresses or instruction code. Howevehdfdorrupted value is significant for

the results of the application, this situation vallentually be reflected on message
incorrectness. Thus, of the total faults that canse SDC, most will belong to the

TDC category. Therefore, to detect faults that \@orrimportant data, the contents of
the messages should be monitored. As regards theesal phase, during which

there are no communications, the end results arfedeto ensure reliability.



SMCYV is a detection strategy based on validatirggdbntents of the messages to
be sent. Each application process is duplicated, oth replicas compare all the
fields that form message contents before sendigntessage is sent only if the com-
parison is successful.

This technique allows detecting all faults thats&a@ DCs; from the point of view
of the parallel application, SMCV ensures that &mwit that affects the state of a
process is not propagated to other process ofgpécation, which confines the ef-
fects of the fault to the local process. Faced &itherror, SMCV currently notifies
the application and produces a safe stop. If d iomparison of the results is added
to detect faults in the serial portion, SMCV ensusgstem reliability and, therefore,
that the results of any application that finishesaaition are correct.

Message contents are validated before sending #ssage. Thus, only one of the
replicas effectively sends the message, which mehas no additional network
bandwidth is consumed. Taking into account thatenirnetworks have protocols that
ensure reliable communications, there is no neeetify the contents of the messag-
es upon reception (which would involve the transinis of two messages).

SMCYV provides the following features:

« Each process and its replica are locally validafdee strategy is distributed in
each application process. It is decentralized.

« It prevents the propagation of errors among apttingprocesses. Also, it detects
errors in the serial part of the application byalteg the end results.

 Itintroduces a low overhead in execution timecsinnly one comparison is added
for each byte of each outgoing communication awedethd result (it should be not-
ed that the cost of comparison is lower than thi@abonmunication).

« A conservative detection strategy, designed fousetial programs, consists in
duplicating application computation; to protect gmam outputs, each memory
write operation is checked before being written [Bdbmpared with this type of al-
ternatives, SMCYV involves a reduced work overloadthis sense, it can be said
that it is a lightweight technique.

« When a fault is detected, the application is stdppdlowing relaunching the exe-
cution. There is no need to wait for the incorigop to re-execute, so SMCV nar-
rows error latency. This carries a gain in religpilbut also in time, which be-
comes particularly significant in scientific apgltons that can run for several
days.

e SMCV increases system reliability, understood asnilimber of times the applica-
tion ends correctly, because it is able to detmditd that cause TDC.

It achieves a trade-off between detection lateadgitional workload and involved
resources. SMCV allows latency in detection, sinoeverification is carried out
when the corrupt value is first used. This postgotetection until the time when
the altered data are part of the contents of thesame. However, this implies a
lower additional workload than validating each wriiperation (which produces
low latency with high workload), and better leveraghe resources than an only
final comparison (which involves duplicating allmputation to detect only at the



end, producing high latency with low workload). Tlhes frequent communication
between processes, the higher latency and the wadoad.

4.2  Leveraging Redundant Hardware Resources

Hardware manufacturer’s trend is to add more ctogsrocessors. However, many
applications do not take advantage of all compatatiesources efficiently. On the
other hand, the increase in the amount of trangauits goes hand in hand with the
rise in the number of processing cores. As a careezg, the focus is no longer only
processor performance, but factors such as retialihd availability have become
more relevant. Therefore, the use of cores to aautytasks related to fault tolerance
has advantages both as regards to leveraging theserces as well as adding a bene-
ficial feature for the system.

In this context, SMCV takes advantage of the istamedundancy existing in mul-
ticores, using CMP cores to locate the replicashefprocesses that perform useful
computation for the application. The output to maiemory is the critical aspect for
selecting the cores that will be used to detecfahéts that occur in the others. SMCV
tries to exploit the memory hierarchy of the CM® tlsat the redundancy of the com-
putation that is executed in any given core isgdai another core with which some
level of cache is shared. Thus, many comparisohdeiresolved at LLE minimiz-
ing main memory access.

5 Proposed Methodology Description

As already explained, SMCYV is a software-centriatsigy that can detect transient
faults in a multicore cluster on which a messagesipg scientific parallel application
is being run. Upon detection of a fault, a useorefs issued and the application is
aborted, thus increasing system reliability.

Figure 2 shows an outline of the proposed detectiethodology. Each process in
the parallel application is run in a core of the EMind the computation it carries out
is internally duplicated in a thread, which in tumexecuted in a core that shares
some cache level with the core running the origpracess. Thus, there is no need to
access the main memory, taking benefit from theahidy to solve comparisons.

Each process is run concurrently with its replighich means that a synchroniza-
tion mechanism is required. When a communicatiotoi®e performed (point-to-
point or collective), it temporarily stops executiand waits for its replica to reach the
same point. Once there, all fields from the messadge sent are compared, byte to
byte, to validate that the contents calculated diy lbeplicas are the same. Only if this
proves true, one of the replicas sends the messagaring that no corrupt data are
propagated to other processes.

3 LLC: Last Level Cache
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Fig. 2. SMCV methodology. (a) Proposed detection outlibg Behavior in presence of faults.

The recipient(s) of the messages stop upon receptiol remain on hold. Once re-
ceived, it copies the contents of the messagesteefilica (also using memory hierar-
chy) and both replicas continue with their compotatAssuming that network errors
are detected and corrected at the network layer,véilidated message reaches its
destination uncorrupted. By comparing the messader® sending it, the message
can be sent only once. Were it be compared on tiecepwo copies of the message
would have to be sent through the network, whichildde detrimental to bandwidth
use and network fault vulnerability.

Finally, when application execution finishes, theained results are checked once
to detect faults that may have occurred after comaoations ended, during the serial
part of the application.

5.1 Characterizing SMCV'’s Additional Workload

Additional workload is related to computing amowaded by the fault detection
strategy. This metric is useful to compare thishodblogy with other options. To
have an approach, a conservative strategy basedeowalidation of memory write
operations, similar to those used in sequentialiegtppns, has been analyzed. In this
case, parallel application processes are alsoahiptl in threads as described, but the
results of all write operations are validated (ppased to validating only the contents
of the messages sent). This strategy can detetawdts, but with a significant in-
crease in computation amount.
The work overloadMyy introduced by the write validation technique igagi by:

Wwy = S+ M.k) -(Csync + Ccomp) (3)

In Equation (3)Srepresents the number of write operations perfdrinethe ap-
plication, excluding those corresponding to the sagss it sends. It is assumed that
the application sendd messages & elements (average) ea@y,. andCeom, repre-
sent the costs of a synchronization operation aconaparison operation, respective-
ly. The first factor in Equation (3) is thereforeettotal number of write operations
performed by the application. If all write operaisoare validated, each will involve a
synchronization operation and a comparison operatio



On the other hand, the workload added by messdglatian, W,y is given by:
Wyy =M. (Csync +k. Ccomp) (4)

In the case of message validation, for each megbmge is an only synchroniza-
tion operation anét comparisons (one for each element in the message).

The relation between the workload introduced by SMid a strategy that vali-
dates all write operations will then be given by:

Wmy _ M. Csync+M. k. Ccomp (5)
Wwv  S. (Csync+ Ccomp) + M. k.Csync + M. k. Ccomp

The quotient of Equation (5) is always a numberdothan 1, which means that
the additional computation overload for validatimgessages is lower than that for
validating all write operations.

The analysis was carried out for one of the praze#sat communicate all its re-
sults. In the case of a process that performsl|sasraputing, the overload for com-
paring the end results is added, but this is theesa both techniques. Therefore, this
analysis is sufficiently general and representatifvgarious situations.

It can be concluded that SMCYV is a lightweight &gy that adds a reduced work-
load versus more conservative strategies thatdetitct faults that have no impact on
the results of the application.

6 Initial Experimental Validation

The SMCV methodology has been assessed to deteitsidetection efficacy and the
overhead introduced regarding to execution timee Tésults obtained are shown in
this section.

6.1 Testing SMCV's Effectiveness

Tests were run with the detection tool to teseffgcacy. The application used for the
tests was a parallel matrix multiplication (C = AB), programmed following the
Master/Worker paradigm with 4 processes (the Meetelr3 Workers), with the Mas-
ter also taking part of the computation of the Crirg22]. The Master process di-
vides matrix A among all Workers and sends eachtlbaehunk assigned to it, keep-
ing a chunk for itself to participate in the caktidn of the resulting matrix. Then, the
Master sends each Worker a copy of the entire m&riAfter this, all processes
compute their corresponding chunk of matrix C andhe final stage, send the Mas-
ter the part that they have calculated. The Malstéids matrix C from what the
Workers sent and its own computation. All messagesd are non-blocking. The
communications library used is OpenMPI.

All the experiments were run on a cluster with 1&des, each one having 2 Quad
Core Intel Xeon 5405 2GHz processors, 12 MB of la&2he and 2 GB of main



memory. For this first test, an only blade was yseith the 4 processes and their
replicas mapped to the 8 cores of the blade.

To implement SMCV, a part of an MPI communicatiomtive’s library was de-
veloped, with the added functionality of fault d#ten by comparison upon sending,
message contents duplication upon reception, anductency control between repli-
cas. The Pthreads library was used for creatingepkcas, and replica synchroniza-
tion was done with semaphores.

The SMCV strategy was applied to the describediegupdn, replicating each of
its processes in a thread as explained in Secti¢for&his, the source code of the
application is required). The experiment consistethjecting faults at various points
of the application by means of a debugging toold®dhis, a breakpoint is inserted at
a certain point of the execution of one of the mpion processes; the value of a
variable is modified, and computation is resumedhst the consequence of the fault
at the end of the execution can be analyzed (@tisnique simulates a real fault in a
processor register, since for data corruption twhee apparent, it must be observable
as a difference between the memory states of flieas).

Even though a transient fault can randomly occuargt point during execution,
significant processing time points were selectadttie simulated injection, both for
the Master and the Workers.

The strategy was capable of detecting all faults iffected message contents
(TDC), as expected, notifying and aborting the magibn so that the corruption was
not able to propagate. Thus, all Workers processirmgotected. On the other hand,
the faults that occurred in the data kept by thetelafor local computation, and those
that were produced after the partial results frdrivarkers had been collected by the
Master in the last stage (corresponding to the p&@on) were detected while com-
paring the end results.

6.2 OverheadMeasurements

The overhead is a metric of the incidence of theeat®mn tool on system perfor-
mance, in the absence of faults. The overhead eatetermined as the extra execu-
tion time implied by adding the SMCV strategy te tbriginal application, on the
architecture described above. The time added by \&4G consequence of the du-
plication of each process, the synchronization betwreplicas, the comparison car-
ried out before each message is sent, the dujplicafithe messages received, and the
final verification of the results.

Experiments were carried out by applying the SMC¥thndology to the matrix
multiplication application with 2, 4 and 8 procesggncluding the Master), with
square matrix sizes of 512, 1024, 2048, 4096 ar®? &lements. The mapping be-
tween processes and processors was made in a atagrnsures the same conditions
of execution with and without the SMCV strategy,arder to directly compare the
execution times. Up to 4 processes, an only blaae weed, running application pro-
cesses and its replicas using the all 8 coreshdncase of 8 processes, two blades
were used, each of them running 4 processes dphkcation (without SMCV) and
4 processes and its replicas (8 cores) with SMCV.



Each experiment was run five times, and the resudt® averaged to improve sta-
bility. The standardized results, with respecthe éxecution time of the application
with no fault detection, are shown in Table 1 afglFe 3.

Procesos
Tam (N) 2 4 8
512 0,87% 14,24% 55,11%
1024 0,01% 1,63% 21,40%
2048 0,39% 1,61% 10,05%
4096 -0,14% 0,91% 4,74%
8192 0,17% 0,92% 2,45%

Table 1.Overhead measurements
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Fig. 3. SMCV’s overhead in execution time

As it can be observed, the overhead decreaseg aizthof the problem grows up.
This is because, with larger matrixes, the appbcaspends more time computing.
However, for any given number of processes, thebmimf messages remains con-
stant. Therefore, synchronization, comparison agdsage contents duplication times
are overshadowed by processing time. On the othed,hsmall matrixes require a
short computation time and therefore all commuiocatelated detection activities
become more relevant.

Similarly, it can be seen that, for any given masize, overhead increases with
the number of processes. This is explained by dloe that the number of messages
(and therefore, synchronizations, verifications angies) increases with the number
of processes.

The case of 2 processes was the one that presemiter dispersion between dif-
ferent repetitions of the experiment. A factor ahdomness is present; inclusive, in
the case of N = 4096, the incorporation of SMCV egrp to perform better than the
original application. However, with the precisiohtbe obtained measurements, dif-
ferences below 1 %, which occur in all cases, arsidered negligible.

Based on the experiments carried out, it can beladed that, when the size of the
problem increases but the number of processes memanstant, the overhead is sig-



nificantly low. This would mean that, in real amgaliions with high performance re-
quirements, handling large amounts of data, sinolerheads can be obtained.

7 Future Work

This work is part of a more extensive proposal vehpsrpose is providing transi-
ent fault tolerance for systems formed by sciantifiessage-passing parallel applica-
tions that are run on multicore cluster architezsur

Fault tolerance includes the phases of detectiostegtion, and recovery. In the
context of permanent faults, the existing technsguest widely used are checkpoint-
ing and event log for protection, and rollback-neeny [24]. The proposal consists in
integrating the transient fault detection methodgldéo the protection and recovery
strategies available for permanent faults to previchnsient fault tolerance. This
means that there is no need of using triple modeldundancy (TMR) [16] with vot-
ing mechanisms to detect and recover from a trahdault. Also, since transient
faults do not require system reconfiguration, resgvcan be achieved by re-
executing the same core of the failed process.

In the road towards achieving this goal, the folluyMines are open:

1. Perfecting the detection strategy:

— Expanding the experimental validation. A test tisaore thorough than the one
carried out so far requires the use of the mettoagolvith standard applications.
In the next stage, NAS benchmarks will be usedclwviaire widely used in the sci-
entific environment to measure the performanceaséltel machines because they
are representative of the type of computation rfresfuently made. These bench-
marks respond to other parallel programming paradjgand also have the ad-
vantage of providing self-verification functions thfe results, which is useful for
validating the detection strategy. In this senke,ibtegration with fault injection
tools is desirable, to improve validation capaieititby means of extensive random
fault injection campaigns. The overhead obtaineth whese applications will be
measured.

— Achieving transparency for the application. At tberrent development level,
SMCV's duplication process, based on threads, mesjuminor changes in the ap-
plication code (and recompiling) to support theaktan of the replica in shared-
memory with the original process and the use ofcthamunications library with
extended functionality. To obtain this transparen@plication must be imple-
mented at the level of processes rather than thread

— Optimizing the methodology to improve the trade-b#tween reliability, over-
head, additional workload, detection latency (etlato the recovery cost) and re-
source utilization. A detailed characterizationlwillow suggesting new ways of
improving performance, considering the possibitifyconfiguring the robustness
level based on application coverage needs or mawinawerhead permitted
[6,11,13].



2. Providing full tolerance to SDC, restoring the systto its state previous to the
fault:

In a following stage, the distributed detectiorattgy (already optimized) will be
integrated with fault tolerance architectures agento permanent faults. The goal is
obtaining a system capable of tolerating both peemtiand transient faults. In this
sense, integration with RADIC [15] will be attem@t&RADIC is a transparent, scala-
ble, flexible, and fully distributed architectureat provides fault tolerance through
non-reliable elements and can recover after a pegntdault in a node. The aim is to
leverage the methodology provided by RADIC for panent faults (the rollback
recovery mechanism, with non-coordinated checkpaamtd message logs), and add
transient fault tolerance. The resulting systen kalve to be tested to determine the
reliability obtained, transparency for the applicaf resource utilization, overhead in
absence of faults, and degradation in presencauttsf

8 Conclusions

In this paper, SMCV is presented, which is a tramsfault detection methodology,
purely implemented through software and specificdiésigned for scientific, mes-
sage-passing parallel applications that are rumaolticore clusters. Under the prem-
ise that in this type of applications, all informoeat that is relevant for the end results
is transmitted among the processes that are péittbE SMCV strategy is based on
validating the contents of the messages to be amthtcomparing the end results to
achieve a compromise between a high level of rolmsst against faults and the intro-
duction of a low execution time overhead, conseqeesf the non-detection of the
faults that would normally not affect the resuldso, it introduces a reduced addi-
tional workload versus the more conservative sfjiatethat validate all write-to-
memory operations, similar to the ones used inesatipl applications.
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